R语言如何在生存分析与Cox回归中计算IDI,NRI指标

原文链接:http://tecdat.cn/?p=6095

原文出处:拓端数据部落公众号

读取样本数据

 D=D\[!is.na(apply(D,1,mean)),\] ; dim(D)
## \[1\] 416   7

查询部分数据(结果和预测因子)

head(D)
##   time status      age albumin edema protime bili
## 1  400      1 58.76523    2.60   1.0    12.2 14.5
## 2 4500      0 56.44627    4.14   0.0    10.6  1.1
## 3 1012      1 70.07255    3.48   0.5    12.0  1.4
## 4 1925      1 54.74059    2.54   0.5    10.3  1.8
## 5 1504      0 38.10541    3.53   0.0    10.9  3.4
## 6 2503      1 66.25873    3.98   0.0    11.0  0.8

模型0和模型1的结果数据和预测变量集

outcome=D\[,c(1,2)\]
covs1<-as.matrix(D\[,c(-1,-2)\])
covs0<-as.matrix(D\[,c(-1,-2, -7)\])

head(outcome)
##   time status
## 1  400      1
## 2 4500      0
## 3 1012      1
## 4 1925      1
## 5 1504      0
## 6 2503      1
``````
head(covs0)
##        age albumin edema protime
## 1 58.76523    2.60   1.0    12.2
## 2 56.44627    4.14   0.0    10.6
## 3 70.07255    3.48   0.5    12.0
## 4 54.74059    2.54   0.5    10.3
## 5 38.10541    3.53   0.0    10.9
## 6 66.25873    3.98   0.0    11.0
``````
head(covs1)
##        age albumin edema protime bili
## 1 58.76523    2.60   1.0    12.2 14.5
## 2 56.44627    4.14   0.0    10.6  1.1
## 3 70.07255    3.48   0.5    12.0  1.4
## 4 54.74059    2.54   0.5    10.3  1.8
## 5 38.10541    3.53   0.0    10.9  3.4
## 6 66.25873    3.98   0.0    11.0  0.8

推理  

t0=365*5
x<-IDI (outcome, covs0, covs1, t0, npert=200) ;

输出 

##     Est. Lower Upper p-value
## M1 0.090 0.052 0.119       0
## M2 0.457 0.340 0.566       0
## M3 0.041 0.025 0.062       0

M1表示IDI

M2表示NRI

M3表示中位数差异

图形演示


参考文献

1.R语言绘制生存曲线估计|生存分析|如何R作生存曲线图

2.R语言生存分析可视化分析

3.R语言如何在生存分析与Cox回归中计算IDI,NRI指标

4.r语言中使用Bioconductor 分析芯片数据

5.R语言生存分析数据分析可视化案例

6.r语言ggplot2误差棒图快速指南

7.R 语言绘制功能富集泡泡图

8.R语言如何找到患者数据中具有差异的指标?(PLS—DA分析)

9.R语言中的生存分析Survival analysis晚期肺癌患者4例

你可能感兴趣的:(数据挖掘深度学习机器学习算法)