Sharding-JDBC之绑定表(关联表)

目录

    • 一、简介
    • 二、maven依赖
    • 三、数据库
      • 3.1、创建数据库
      • 3.2、创建表
    • 四、配置(二选一)
      • 4.1、properties配置
      • 4.2、yml配置
    • 五、实现
      • 5.1、实体层
      • 5.2、持久层
      • 5.3、服务层
      • 5.4、测试类
        • 5.4.1、保存订单数据
        • 5.4.2、查询订单详情数据(关联表)

一、简介

  这里的绑定表也叫关联表。指分片规则一致的主表和子表。例如:t_order 表和 t_order_item 表,均按照 order_id 分片,则此两张表互为绑定表关系。绑定表之间的多表关联查询不会出现笛卡尔积关联,关联查询效率将大大提升。

  本文示例大概架构,为了讲解采用最简单的水平分表+关联表,如下图:
Sharding-JDBC之绑定表(关联表)_第1张图片

二、maven依赖

pom.xml


<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0modelVersion>
    <parent>
        <groupId>org.springframework.bootgroupId>
        <artifactId>spring-boot-starter-parentartifactId>
        <version>2.6.0version>
        <relativePath/> 
    parent>
    <groupId>com.aliangroupId>
    <artifactId>sharding-jdbcartifactId>
    <version>0.0.1-SNAPSHOTversion>
    <name>sharding-jdbcname>
    <description>sharding-jdbcdescription>

    <properties>
        <java.version>1.8java.version>
    properties>

    <dependencies>
        <dependency>
            <groupId>org.springframework.bootgroupId>
            <artifactId>spring-boot-starter-webartifactId>
        dependency>

        <dependency>
            <groupId>org.springframework.bootgroupId>
            <artifactId>spring-boot-starter-data-jpaartifactId>
        dependency>

        <dependency>
            <groupId>org.apache.shardingspheregroupId>
            <artifactId>sharding-jdbc-spring-boot-starterartifactId>
            <version>4.1.1version>
        dependency>

        <dependency>
            <groupId>com.alibabagroupId>
            <artifactId>druidartifactId>
            <version>1.2.15version>
        dependency>

        <dependency>
            <groupId>mysqlgroupId>
            <artifactId>mysql-connector-javaartifactId>
            <version>8.0.26version>
            <scope>runtimescope>
        dependency>

        <dependency>
            <groupId>org.springframework.bootgroupId>
            <artifactId>spring-boot-starter-testartifactId>
            <scope>testscope>
        dependency>

        <dependency>
            <groupId>org.projectlombokgroupId>
            <artifactId>lombokartifactId>
            <version>1.18.20version>
        dependency>

        <dependency>
            <groupId>junitgroupId>
            <artifactId>junitartifactId>
            <version>4.12version>
            <scope>testscope>
        dependency>

    dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.bootgroupId>
                <artifactId>spring-boot-maven-pluginartifactId>
            plugin>
        plugins>
    build>

project>

  有些小伙伴的 druid 可能用的是 druid-spring-boot-starter

<dependency>
    <groupId>com.alibabagroupId>
    <artifactId>druid-spring-boot-starterartifactId>
    <version>1.2.6version>
dependency>

  然后出现可能使用不了的各种问题,这个时候你只需要在主类上添加 @SpringBootApplication(exclude = {DruidDataSourceAutoConfigure.class}) 即可

package com.alian.shardingjdbc;

import com.alibaba.druid.spring.boot.autoconfigure.DruidDataSourceAutoConfigure;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication(exclude = {DruidDataSourceAutoConfigure.class})
@SpringBootApplication
public class ShardingJdbcApplication {

    public static void main(String[] args) {
        SpringApplication.run(ShardingJdbcApplication.class, args);
    }

}

三、数据库

3.1、创建数据库

CREATE DATABASE `sharding_7` DEFAULT CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci;

3.2、创建表

  在数据库sharding_7下面分别创建四张表:tb_order_1tb_order_2的结构是一样的,tb_order_item_1tb_order_item_2 的结构是一样的,这里 tb_ordertb_order_item 就是关联表。这里是订单详情表里存了订单表的order_id。

tb_order_1

CREATE TABLE `tb_order_1` (
  `order_id` bigint(20) NOT NULL COMMENT '主键',
  `user_id` int unsigned NOT NULL DEFAULT '0' COMMENT '用户id',
  `price` int unsigned NOT NULL DEFAULT '0' COMMENT '价格(单位:分)',
  `order_status` tinyint unsigned NOT NULL DEFAULT '1' COMMENT '订单状态(1:待付款,2:已付款,3:已取消)',
  `order_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `title` varchar(100)  NOT NULL DEFAULT '' COMMENT '订单标题',
  PRIMARY KEY (`order_id`),
  KEY `idx_user_id` (`user_id`),
  KEY `idx_order_time` (`order_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='订单表';

tb_order_2

CREATE TABLE `tb_order_2` (
  `order_id` bigint(20) NOT NULL COMMENT '主键',
  `user_id` int unsigned NOT NULL DEFAULT '0' COMMENT '用户id',
  `price` int unsigned NOT NULL DEFAULT '0' COMMENT '价格(单位:分)',
  `order_status` tinyint unsigned NOT NULL DEFAULT '1' COMMENT '订单状态(1:待付款,2:已付款,3:已取消)',
  `order_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `title` varchar(100)  NOT NULL DEFAULT '' COMMENT '订单标题',
  PRIMARY KEY (`order_id`),
  KEY `idx_user_id` (`user_id`),
  KEY `idx_order_time` (`order_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='订单表';

tb_order_item_1

CREATE TABLE `tb_order_item_1` (
  `id` bigint(20) NOT NULL COMMENT '主键',
  `order_id` bigint(20) unsigned NOT NULL DEFAULT '0' COMMENT '订单id',
  `goods_name` varchar(100)  NOT NULL DEFAULT '' COMMENT '商品名称',
  `price` int unsigned NOT NULL DEFAULT '0' COMMENT '单价(单位:分)',
  `num` int unsigned NOT NULL DEFAULT '0' COMMENT '数量',
  PRIMARY KEY (`id`),
  KEY `idx_order_id` (`order_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='订单详情表';

tb_order_item_2

CREATE TABLE `tb_order_item_2` (
  `id` bigint(20) NOT NULL COMMENT '主键',
  `order_id` bigint(20) unsigned NOT NULL DEFAULT '0' COMMENT '订单id',
  `goods_name` varchar(100)  NOT NULL DEFAULT '' COMMENT '商品名称',
  `price` int unsigned NOT NULL DEFAULT '0' COMMENT '单价(单位:分)',
  `num` int unsigned NOT NULL DEFAULT '0' COMMENT '数量',
  PRIMARY KEY (`id`),
  KEY `idx_order_id` (`order_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='订单详情表';

四、配置(二选一)

4.1、properties配置

application.properties

server.port=8899
server.servlet.context-path=/sharding-jdbc

# 允许定义相同的bean对象去覆盖原有的
spring.main.allow-bean-definition-overriding=true
# 数据源名称,多数据源以逗号分隔
spring.shardingsphere.datasource.names=ds1
# sharding_1数据库连接池类名称
spring.shardingsphere.datasource.ds1.type=com.alibaba.druid.pool.DruidDataSource
# sharding_1数据库驱动类名
spring.shardingsphere.datasource.ds1.driver-class-name=com.mysql.cj.jdbc.Driver
# sharding_1数据库url连接
spring.shardingsphere.datasource.ds1.url=jdbc:mysql://192.168.0.129:3306/sharding_7?serverTimezone=GMT%2B8&characterEncoding=utf8&useUnicode=true&useSSL=false&zeroDateTimeBehavior=CONVERT_TO_NULL&autoReconnect=true&allowMultiQueries=true&failOverReadOnly=false&connectTimeout=6000&maxReconnects=5
# sharding_1数据库用户名
spring.shardingsphere.datasource.ds1.username=alian
# sharding_1数据库密码
spring.shardingsphere.datasource.ds1.password=123456

# 指定tb_order表的数据分布情况,配置数据节点,使用Groovy的表达式,逻辑表tb_order对应的节点是:ds1.tb_order_1, ds1.tb_order_2
spring.shardingsphere.sharding.tables.tb_order.actual-data-nodes=ds1.tb_order_$->{1..2}
# 采用行表达式分片策略:InlineShardingStrategy
# 指定tb_order表的分片策略中的分片键
spring.shardingsphere.sharding.tables.tb_order.table-strategy.inline.sharding-column=order_id
# 指定tb_order表的分片策略中的分片算法表达式,使用Groovy的表达式
spring.shardingsphere.sharding.tables.tb_order.table-strategy.inline.algorithm-expression=tb_order_$->{order_id%2==0?2:1}
# 指定tb_order表的主键为order_id
spring.shardingsphere.sharding.tables.tb_order.key-generator.column=order_id
# 指定tb_order表的主键生成策略为SNOWFLAKE
spring.shardingsphere.sharding.tables.tb_order.key-generator.type=SNOWFLAKE
# 指定雪花算法的worker.id
spring.shardingsphere.sharding.tables.tb_order.key-generator.props.worker.id=124
# 指定雪花算法的max.tolerate.time.difference.milliseconds
spring.shardingsphere.sharding.tables.tb_order.key-generator.props.max.tolerate.time.difference.milliseconds=20

# 指定tb_order_item表的数据分布情况,配置数据节点,使用Groovy的表达式,逻辑表tb_order_item对应的节点是:ds1.tb_order_item_1, ds1.tb_order_item_2
spring.shardingsphere.sharding.tables.tb_order_item.actual-data-nodes=ds1.tb_order_item_$->{1..2}
# 采用行表达式分片策略:InlineShardingStrategy
# 指定tb_order_item表的分片策略中的分片键
spring.shardingsphere.sharding.tables.tb_order_item.table-strategy.inline.sharding-column=order_id
# 指定tb_order_item表的分片策略中的分片算法表达式,使用Groovy的表达式
spring.shardingsphere.sharding.tables.tb_order_item.table-strategy.inline.algorithm-expression=tb_order_item_$->{order_id%2==0?2:1}
# 指定tb_order_item表的主键为order_id
spring.shardingsphere.sharding.tables.tb_order_item.key-generator.column=id
# 指定tb_order_item表的主键生成策略为SNOWFLAKE
spring.shardingsphere.sharding.tables.tb_order_item.key-generator.type=SNOWFLAKE
# 指定雪花算法的worker.id
spring.shardingsphere.sharding.tables.tb_order_item.key-generator.props.worker.id=125
# 指定雪花算法的max.tolerate.time.difference.milliseconds
spring.shardingsphere.sharding.tables.tb_order_item.key-generator.props.max.tolerate.time.difference.milliseconds=20

# tb_order和tb_order_item是绑定表
spring.shardingsphere.sharding.binding-tables[0]=tb_order,tb_order_item
# 打开sql输出日志
spring.shardingsphere.props.sql.show=true

4.2、yml配置

application.yml

server:
  port: 8899
  servlet:
    context-path: /sharding-jdbc

spring:
  main:
    # 允许定义相同的bean对象去覆盖原有的
    allow-bean-definition-overriding: true
  shardingsphere:
    props:
      sql:
       # 打开sql输出日志
       show: true
    datasource:
      # 数据源名称,多数据源以逗号分隔
      names: ds1
      ds1:
        # 数据库连接池类名称
        type: com.alibaba.druid.pool.DruidDataSource
        # 数据库驱动类名
        driver-class-name: com.mysql.cj.jdbc.Driver
        # 数据库url连接
        url: jdbc:mysql://192.168.0.129:3306/sharding_7?serverTimezone=GMT%2B8&characterEncoding=utf8&useUnicode=true&useSSL=false&zeroDateTimeBehavior=CONVERT_TO_NULL&autoReconnect=true&allowMultiQueries=true&failOverReadOnly=false&connectTimeout=6000&maxReconnects=5
        # 数据库用户名
        username: alian
        # 数据库密码
        password: 123456
    sharding:
      # 未配置分片规则的表将通过默认数据源定位
      default-data-source-name: ds1
      tables:
        tb_order:
          # 由数据源名 + 表名组成,以小数点分隔。多个表以逗号分隔,支持inline表达式
          actual-data-nodes: ds1.tb_order_$->{1..2}
          # 分表策略
          table-strategy:
            # 行表达式分片策略
            inline:
              # 分片键
              sharding-column: order_id
              # 算法表达式
              algorithm-expression: tb_order_$->{order_id%2==0?2:1}
          # key生成器
          key-generator:
            # 自增列名称,缺省表示不使用自增主键生成器
            column: order_id
            # 自增列值生成器类型,缺省表示使用默认自增列值生成器(SNOWFLAKE/UUID)
            type: SNOWFLAKE
            # SnowflakeShardingKeyGenerator
            props:
              # SNOWFLAKE算法的worker.id
              worker:
                id: 100
              # SNOWFLAKE算法的max.tolerate.time.difference.milliseconds
              max:
                tolerate:
                  time:
                    difference:
                      milliseconds: 20
        tb_order_item:
          # 由数据源名 + 表名组成,以小数点分隔。多个表以逗号分隔,支持inline表达式
          actual-data-nodes: ds1.tb_order_item_$->{1..2}
          # 分表策略
          table-strategy:
            # 行表达式分片策略
            inline:
              # 分片键
              sharding-column: order_id
              # 算法表达式
              algorithm-expression: tb_order_item_$->{order_id%2==0?2:1}
          # key生成器
          key-generator:
            # 自增列名称,缺省表示不使用自增主键生成器
            column: id
            # 自增列值生成器类型,缺省表示使用默认自增列值生成器(SNOWFLAKE/UUID)
            type: SNOWFLAKE
            # SnowflakeShardingKeyGenerator
            props:
              # SNOWFLAKE算法的worker.id
              worker:
                id: 101
              # SNOWFLAKE算法的max.tolerate.time.difference.milliseconds
              max:
                tolerate:
                  time:
                    difference:
                      milliseconds: 20
      binding-tables:
        - tb_order,tb_order_item
  • 这里演示没分库,就是水平分表
  • 对于逻辑表 tb_order actual-data-nodes 使用Groovy的表达式 ds1.tb_order_$->{1…2},对应的物理表是:ds1.tb_order_1ds1.tb_order_2
  • 对于逻辑表 tb_order_item actual-data-nodes 使用Groovy的表达式 ds1.tb_order_item_$->{1…2},对应的物理表是:ds1.tb_order_item_1ds1.tb_order_item_2
  • table-strategy 表的分片策略,这里只是一个简单的奇数偶数,采用的是 行表达式分片策略 ,需要指定分片键和分片算法表达式(算法支持Groovy的表达式),这里 tb_order tb_order_item 都是使用相同的键进行分片,这里是order_id (一定不要搞错)
  • key-generator :key生成器,需要指定字段和类型,比如这里如果是SNOWFLAKE,最好也配置下props中的两个属性: worker.id max.tolerate.time.difference.milliseconds 属性

五、实现

5.1、实体层

Order.java

@Data
@Entity
@Table(name = "tb_order")
public class Order implements Serializable {

    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    @Column(name = "order_id")
    private Long orderId;

    @Column(name = "user_id")
    private Integer userId;

    @Column(name = "price")
    private Integer price;

    @Column(name = "order_status")
    private Integer orderStatus;

    @Column(name = "title")
    private String title;

    @Column(name = "order_time")
    private LocalDateTime orderTime;

}

OrderItem.java

@Data
@Entity
@Table(name = "tb_order_item")
public class OrderItem implements Serializable {

    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    @Column(name = "id")
    private Long id;

    @Column(name = "order_id")
    private Long orderId;

    @ManyToOne
    @JoinColumn(name = "order_id", referencedColumnName = "order_id", updatable = false, insertable = false)
    private Order order;

    @Column(name = "goods_name")
    private String goodsName;

    @Column(name = "price")
    private Integer price;

    @Column(name = "num")
    private Integer num;

}

5.2、持久层

OrderRepository.java

public interface OrderRepository extends PagingAndSortingRepository<Order, Long> {

    /**
     * 根据订单id查询订单
     * @param orderId
     * @return
     */
    Order findOrderByOrderId(Long orderId);
}

OrderItemRepository.java

public interface OrderItemRepository extends PagingAndSortingRepository<OrderItem, Long> {

    /**
     * 根据用户orderId查询订单详情
     *
     * @param orderId
     * @return
     */
    List<OrderItem> findAllByOrderId(Long orderId);
}

5.3、服务层

OrderService.java

@Slf4j
@Service
public class OrderService {

    @Autowired
    private OrderRepository orderRepository;

    public void saveOrder(Order order) {
        orderRepository.save(order);
    }

    public Order queryOrder(Long orderId) {
        return orderRepository.findOrderByOrderId(orderId);
    }
}

OrderItemService.java

@Slf4j
@Service
public class OrderItemService {

    @Autowired
    private OrderItemRepository orderItemRepository;

    public void saveOrderItem(OrderItem orderItem) {
        orderItemRepository.save(orderItem);
    }

    public List<OrderItem> queryOrderItem(Long orderId) {
        return orderItemRepository.findAllByOrderId(orderId);
    }
}

5.4、测试类

OrderTests.java

@Slf4j
@RunWith(SpringJUnit4ClassRunner.class)
@SpringBootTest
public class OrderTests {

    @Autowired
    private OrderService orderService;

    @Autowired
    private OrderItemService orderItemService;

    @Test
    public void saveOrder() {
        for (int i = 0; i < 10; i++) {
            Order order = new Order();

            OrderItem orderItem = new OrderItem();
            // 随机生成50到100的金额
            int price = (int) Math.round(Math.random() * (10000 - 5000) + 5000);
            // 随机生成1到10的数量
            int num = (int) Math.round(Math.random() * (10 - 1) + 1);
            orderItem.setPrice(price);
            orderItem.setNum(num);
            orderItem.setGoodsName("商品-" + price);

            order.setUserId(1000);
            order.setPrice(price * num);
            order.setOrderStatus(2);
            order.setOrderTime(LocalDateTime.now());
            order.setTitle("");
            orderService.saveOrder(order);
            // 设置orderId
            log.info("订单id:{}", order.getOrderId());
            orderItem.setOrderId(order.getOrderId());
            orderItem.setOrder(order);
            orderItemService.saveOrderItem(orderItem);
        }
    }

    @Test
    public void queryOrder() {
        Long orderId = 847575584761856000L;
        List<OrderItem> orderItemList = orderItemService.queryOrderItem(orderId);
        log.info("查询的结果:{}", orderItemList);
    }

}

5.4.1、保存订单数据

效果图:

Sharding-JDBC之绑定表(关联表)_第2张图片
  从上面的数据来看,tb_order_1的关联数据都在tb_order_item_1 中,tb_order_2的关联数据都在tb_order_item_2 中,这样就可以避免掉笛卡尔积。具体的我们看下查询。

5.4.2、查询订单详情数据(关联表)

20:53:20 526 INFO [main]:Logic SQL: select orderitem0_.id as id1_1_, orderitem0_.goods_name as goods_na2_1_, orderitem0_.num as num3_1_, orderitem0_.order_id as order_id4_1_, orderitem0_.price as price5_1_ from tb_order_item orderitem0_ where orderitem0_.order_id=?

20:53:20 526 INFO [main]:Actual SQL: ds1 ::: select orderitem0_.id as id1_1_, orderitem0_.goods_name as goods_na2_1_, orderitem0_.num as num3_1_, orderitem0_.order_id as order_id4_1_, orderitem0_.price as price5_1_ from tb_order_item_2 orderitem0_ where orderitem0_.order_id=? ::: [847575584761856000]

20:53:20 566 INFO [main]:Logic SQL: select order0_.order_id as order_id1_0_0_, order0_.order_status as order_st2_0_0_, order0_.order_time as order_ti3_0_0_, order0_.price as price4_0_0_, order0_.title as title5_0_0_, order0_.user_id as user_id6_0_0_ from tb_order order0_ where order0_.order_id=?

20:53:20 566 INFO [main]:Actual SQL: ds1 ::: select order0_.order_id as order_id1_0_0_, order0_.order_status as order_st2_0_0_, order0_.order_time as order_ti3_0_0_, order0_.price as price4_0_0_, order0_.title as title5_0_0_, order0_.user_id as user_id6_0_0_ from tb_order_2 order0_ where order0_.order_id=? ::: [847575584761856000]

20:53:20 580 INFO [main]:查询的结果:[OrderItem(id=847575584870912000, orderId=847575584761856000, order=Order(orderId=847575584761856000, userId=1000, price=45130, orderStatus=2, title=, orderTime=2023-03-28T20:42:47), goodsName=商品-9026, price=9026, num=5)]

  从上面的结果我们可以看到当我们查询order_id为 847575584761856000 的记录时,因为我们之前是按 order_id 进行的分表,偶数直接查询 tb_order_item_2 ,查询到订单详情记录后,关联查询订单记录,就直接查询 tb_order_2 ,都是主键或索引查询,没有出现笛卡尔积式的查询,提高了效率。

你可能感兴趣的:(ShardingJDBC,Sharding-JDBC,绑定表,关联表)