FreeRTOS实时操作系统(二)任务创建与任务删除(HAL库)

文章目录

  • 前言
  • 系统配置
  • 任务创建
  • 动态任务创建删除实践
  • 静态任务创建删除实践


前言

接着学习正点原子的FreeRTOS教程,涉及到一些详细的系统内文件代码


系统配置

可以通过各种的宏定义来实现我们自己的RTOS配置(在FreeRTOSconfig.h)

  1. “INCLUDE”:配置API函数
  2. ”config“:完成功能配置和裁剪
  3. 其他配置项LPendSV宏定义,SVC宏定义
    FreeRTOS实时操作系统(二)任务创建与任务删除(HAL库)_第1张图片

任务创建

分为静态和动态创建

动态任务创建:任务的任务控制块以及任务的栈空间所需的内存,均由自动从堆中分配

静态创建任务:任务的任务控制块以及任务的栈空间所需的内存,需用户分配提供


任务创建:
FreeRTOS实时操作系统(二)任务创建与任务删除(HAL库)_第2张图片
返回值:
pdPASS:创建成功
errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY:创建失败(内存分配失败)

如何成功创建:

  1. 将宏configSUPPORT_DYNAMIC_ALLOCATION 配置为 1
  2. 定义函数入口参数
  3. 编写任务函数

任务控制块:
FreeRTOS实时操作系统(二)任务创建与任务删除(HAL库)_第3张图片
每个任务都有属于自己的任务控制块,类似身份证。


静态创建任务:
FreeRTOS实时操作系统(二)任务创建与任务删除(HAL库)_第4张图片
返回值:
NULL:用户没有提供相应的内存,任务创建失败
其他值:任务句柄,任务创建成功

如何成功创建:

  1. 需将宏configSUPPORT_STATIC_ALLOCATION 配置为 1
  2. 定义空闲任务&定时器任务的任务堆栈及TCB
  3. 实现两个接口函数:vApplicationGetIdleTaskMemory( ) ,vApplicationGetTimerTaskMemory ( )
  4. 定义函数入口参数
  5. 编写任务函数

任务删除:
void vTaskDelete(TaskHandle_t xTaskToDelete);
参数是待删除任务的任务句柄,用于删除已被创建的任务,被删除的任务将从就绪态任务列表、阻塞态任务列表、挂起态任务列表和事件列表中移除

要点:

  1. 当传入的参数为NULL,则代表删除任务自身(当前正在运行的任务)
  2. 空闲任务会负责释放被删除任务中由系统分配的内存,但是由用户在任务删除前申请的内存, 则需要由用户在任务被删除前提前释放,否则将导致内存泄露

如何删除:

  1. 使用删除任务函数,需将宏INCLUDE_vTaskDelete 配置为 1
  2. 入口参数输入需要删除的任务句柄(NULL代表删除本身)

动态任务创建删除实践

1.任务创建删除:(正点原子的代码)

首先肯定是要打开宏定义的:
FreeRTOS实时操作系统(二)任务创建与任务删除(HAL库)_第5张图片
一个静态一个动态创建的宏定义

 xTaskCreate((TaskFunction_t         )   task1,
             (char *                 )   "task1",
             (configSTACK_DEPTH_TYPE )   TASK1_STACK_SIZE,
             (void *                 )   NULL,
             (UBaseType_t            )   TASK1_PRIO,
             (TaskHandle_t *         )   &task1_handler );

利用该函数创建任务,从上到下分别是指向任务函数的指针,任务名,堆栈大小,任务指针参数,优先级,任务句柄。但是我感觉不需要强制类型转换,有时写错也不容易发现

一般系统初始化的操作是先创建一个任务,这个任务完成系统所有任务的创建,创建完成后把自己删除掉的结构,这样代码比较简洁,结构清晰。

/* START_TASK 任务 配置
 * 包括: 任务句柄 任务优先级 堆栈大小 创建任务
 */
#define START_TASK_PRIO         1
#define START_TASK_STACK_SIZE   128
TaskHandle_t    start_task_handler;
void start_task( void * pvParameters );

/* TASK1 任务 配置
 * 包括: 任务句柄 任务优先级 堆栈大小 创建任务
 */
#define TASK1_PRIO         2
#define TASK1_STACK_SIZE   128
TaskHandle_t    task1_handler;
void task1( void * pvParameters );

/* TASK2 任务 配置
 * 包括: 任务句柄 任务优先级 堆栈大小 创建任务
 */
#define TASK2_PRIO         3
#define TASK2_STACK_SIZE   128
TaskHandle_t    task2_handler;
void task2( void * pvParameters );

/* TASK3 任务 配置
 * 包括: 任务句柄 任务优先级 堆栈大小 创建任务
 */
#define TASK3_PRIO         4
#define TASK3_STACK_SIZE   128
TaskHandle_t    task3_handler;
void task3( void * pvParameters );
void freertos_demo(void)  //先创建一个任务

{    
    xTaskCreate((TaskFunction_t         )   start_task,
                (char *                 )   "start_task",
                (configSTACK_DEPTH_TYPE )   START_TASK_STACK_SIZE,
                (void *                 )   NULL,
                (UBaseType_t            )   START_TASK_PRIO,
                (TaskHandle_t *         )   &start_task_handler );
    vTaskStartScheduler();  //开始调度,否则不会执行start_task任务
}


void start_task( void * pvParameters )  //这个任务完成所有任务的创建
{
    taskENTER_CRITICAL();               /* 进入临界区 */
    xTaskCreate((TaskFunction_t         )   task1,
                (char *                 )   "task1",
                (configSTACK_DEPTH_TYPE )   TASK1_STACK_SIZE,
                (void *                 )   NULL,
                (UBaseType_t            )   TASK1_PRIO,
                (TaskHandle_t *         )   &task1_handler );
                
    xTaskCreate((TaskFunction_t         )   task2,
                (char *                 )   "task2",
                (configSTACK_DEPTH_TYPE )   TASK2_STACK_SIZE,
                (void *                 )   NULL,
                (UBaseType_t            )   TASK2_PRIO,
                (TaskHandle_t *         )   &task2_handler );
                
    xTaskCreate((TaskFunction_t         )   task3,
                (char *                 )   "task3",
                (configSTACK_DEPTH_TYPE )   TASK3_STACK_SIZE,
                (void *                 )   NULL,
                (UBaseType_t            )   TASK3_PRIO,
                (TaskHandle_t *         )   &task3_handler );
    ............
    ............
    vTaskDelete(NULL);
    taskEXIT_CRITICAL();                /* 退出临界区 */
}



/* 任务一,实现LED0每500ms翻转一次 */
void task1( void * pvParameters )
{
    while(1)
    {
        printf("task1正在运行!!!\r\n");
        LED0_TOGGLE();
        vTaskDelay(500);
    }
}
.................
.................
................

这里vTaskStartScheduler()函数执行后,系统就会开始执行任务,但是很明显,真正的任务都没开始创建,且因为系统按照从上往下执行,所以会先创建的任务先执行,不按照优先级走,等所有任务创建完成后,系统才开始真正按照优先级开始执行任务。

我觉得FreeRTOS的执行过程就是一个一个任务的执行,他是通过执行完一个任务后,再执行下一个,遇到优先级比它高的任务,会被打断,这也就是为什么创建task1后,系统就停下了start_task工作,执行task1的代码了,执行完task1后,又回去初始化task2。感觉 vTaskDelay()函数是系统调度的一个灵活工具。让系统从循环执行任务(还是很像裸机),开始进行灵活分配cpu了

这里用到了临界区,FreeRTOS临界区是指那些必须完整运行,不能被打断的代码段,比如有的外设的初始化需要严格的时序,初始化过程中不能被打断。进入临界区代码的时候需要关闭中断,当处理完临界区代码以后再打开中断。起到一个代码保护的作用。

感觉这个FreeRTOS和之间裸机开发时,看到很多人的程序利用uwTick的数值来执行程序很像,但当然FreeRTOS强大的多,如下:

__weak void HAL_IncTick(void) //利用滴答定时器(一般1ms累加一次)
{
  uwTick += uwTickFreq;
}

void deme()
{
  if(uwTick-led_tick>1000) //实现每隔1000个计数执行一次代码
  {
     led_tick=uwTick;
     .........
     .........
  }
  
}

2.HAL库创建任务:
利用STM32CubeMX生成的FreeRTOS来实现,与正点原子(手动移植)有些区别

我这里简单写了一个点灯任务进行测试,可以正常运行

TaskHandle_t  task1_handler;

void vTaskCode( void * pvParameters )
 {
	 while(1)
	 {
		HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_4); 
		vTaskDelay(500);
	 }
 }
 void vOtherFunction( void )
 {
	xTaskCreate( vTaskCode, "tak1", 128, NULL, 1, &task1_handler );
	//vTaskStartScheduler();
 }

int main(void)
{
  /* MCU Configuration--------------------------------------------------------*/
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
  /* Configure the system clock */
  SystemClock_Config();
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  /* Init scheduler */
  osKernelInitialize();  /* Call init function for freertos objects (in freertos.c) */
  MX_FREERTOS_Init();  
  vOtherFunction();   //放在操作系统内核启动前
  /* Start scheduler */  
  osKernelStart();

  while (1)
  {}
}

有些不懂的地方,首先我自己不需要启动任务调度了,当然执行这个函数vTaskStartScheduler()也没啥问题,但是这个任务创建放的位置需要在osKernelStart()前面,正点原子的如下,不是特别理解,为啥放在操作系统内核启动,开始任务调度后就不能运行了。

查了查资料,可能是任务调度开启之后,就正式进入FreeRTOS系统接管领域,之后程序只会跑在中断和任务函数中,也就是说如果放在后面,根本就不会执行,一个任务都没创建。而正点原子手动开启任务调度前已经创建了一个任务,所以他才成功了。

int main(void)
{
    HAL_Init();                                 /* 初始化HAL库 */
    sys_stm32_clock_init(360, 25, 2, 8);        /* 设置时钟,180Mhz */
    delay_init(180);                            /* 延时初始化 */
    usart_init(115200);                         /* 串口初始化为115200 */
    led_init();                                 /* 初始化LED */
    key_init();                                 /* 初始化按键 */
    sdram_init();                               /* SRAM初始化 */
    lcd_init();                                 /* 初始化LCD */

    my_mem_init(SRAMIN);                        /* 初始化内部内存池 */
    my_mem_init(SRAMEX);                        /* 初始化外部内存池 */
    my_mem_init(SRAMCCM);                       /* 初始化CCM内存池 */    
    freertos_demo();  //任务创建
}

静态任务创建删除实践

静态任务创建比较复杂,如果后面有需要再补充

你可能感兴趣的:(FreeRTOS,FreeRTOS,stm32,单片机)