- 云原生--微服务、CICD、SaaS、PaaS、IaaS
青秋.
云原生docker云原生微服务kubernetesserverlessservice_meshci/cd
往期推荐浅学React和JSX-CSDN博客一文搞懂大数据流式计算引擎Flink【万字详解,史上最全】-CSDN博客一文入门大数据准流式计算引擎Spark【万字详解,全网最新】_大数据spark-CSDN博客目录1.云原生概念和特点2.常见云模式3.云对外提供服务的架构模式3.1IaaS(Infrastructure-as-a-Service)3.2PaaS(Platform-as-a-Servi
- Spark运行架构
EmoGP
Sparkspark架构大数据
Spark框架的核心是一个计算引擎,整体来说,它采用了标准master-slave的结构 如下图所示,它展示了一个Spark执行时的基本结构,图形中的Driver表示master,负责管理整个集群中的作业任务调度,图形中的Executor则是slave,负责实际执行任务。由上图可以看出,对于Spark框架有两个核心组件:DriverSpark驱动器节点,用于执行Spark任务中的main方法,负
- Spark 各种配置项
zhixingheyi_tian
大数据sparkSparkConfsparkjvmjava
/bin/spark-shell--masteryarn--deploy-modeclient/bin/spark-shell--masteryarn--deploy-modeclusterTherearetwodeploymodesthatcanbeusedtolaunchSparkapplicationsonYARN.Inclustermode,theSparkdriverrunsinside
- Spark RDD 及性能调优
Aurora_NeAr
sparkwpfc#
RDDProgrammingRDD核心架构与特性分区(Partitions):数据被切分为多个分区;每个分区在集群节点上独立处理;分区是并行计算的基本单位。计算函数(ComputeFunction):每个分区应用相同的转换函数;惰性执行机制。依赖关系(Dependencies)窄依赖:1个父分区→1个子分区(map、filter)。宽依赖:1个父分区→多个子分区(groupByKey、join)。
- Apache Iceberg数据湖基础
Aurora_NeAr
apache
IntroducingApacheIceberg数据湖的演进与挑战传统数据湖(Hive表格式)的缺陷:分区锁定:查询必须显式指定分区字段(如WHEREdt='2025-07-01')。无原子性:并发写入导致数据覆盖或部分可见。低效元数据:LIST操作扫描全部分区目录(云存储成本高)。Iceberg的革新目标:解耦计算引擎与存储格式(支持Spark/Flink/Trino等);提供ACID事务、模式
- 大数据技术之Flink
第1章Flink概述1.1Flink是什么1.2Flink特点1.3FlinkvsSparkStreaming表Flink和Streaming对比FlinkStreaming计算模型流计算微批处理时间语义事件时间、处理时间处理时间窗口多、灵活少、不灵活(窗口必须是批次的整数倍)状态有没有流式SQL有没有1.4Flink的应用场景1.5Flink分层API第2章Flink快速上手2.1创建项目在准备
- Scala 简介
froginwe11
开发语言
Scala简介引言Scala是一种多范式编程语言,它结合了面向对象和函数式编程的特性。自从2003年由MartinOdersky教授在EPFL开发以来,Scala已经成为了在Java虚拟机(JVM)上运行的高效编程语言。本文将为您详细介绍Scala的起源、特点、应用场景以及学习资源。Scala的起源与发展起源Scala的灵感来源于多种编程语言,包括Java、C++、Self、Haskell和ML。
- Hadoop核心组件最全介绍
Cachel wood
大数据开发hadoop大数据分布式spark数据库计算机网络
文章目录一、Hadoop核心组件1.HDFS(HadoopDistributedFileSystem)2.YARN(YetAnotherResourceNegotiator)3.MapReduce二、数据存储与管理1.HBase2.Hive3.HCatalog4.Phoenix三、数据处理与计算1.Spark2.Flink3.Tez4.Storm5.Presto6.Impala四、资源调度与集群管
- SVG格式深度解析与Path应用实战:从原理到企业级全场景开发(实战版)
一、简介在数字图形领域,SVG(ScalableVectorGraphics)凭借其矢量特性、可编辑性和交互能力,成为现代设计和开发的核心工具。本文将从SVG的基础原理出发,深入解析其技术特性,并与主流图像格式(如JPEG、PNG、PLT等)进行对比分析。通过企业级应用案例,结合代码示例和Mermaid图表,帮助开发者全面掌握SVG的应用场景与开发技巧,实现从零到一的高效实践。二、SVG格式的核心
- 大数据分析技术的学习路径,不是绝对的,仅供参考
水云桐程序员
学习大数据数据分析学习方法
阶段一:基础筑基(1-3个月)1.编程语言:Python:掌握基础语法、数据结构、流程控制、函数、面向对象编程、常用库(NumPy,Pandas)。SQL:精通SELECT语句(过滤、排序、分组、聚合、连接)、DDL/DML基础。理解关系型数据库概念(表、主键、外键、索引)。MySQL或PostgreSQL是很好的起点。Java/Scala:深入理解Hadoop/Spark等框架会更有优势。初学者
- 大数据开发高频面试题:Spark与MapReduce解析
被招网约司机的盯上了好几天实习了六个月,到期被通知不能转正。外包裁员让我去友商我该去吗?offer比较华为状态码浏览器插件嵌入式项目推荐2019秋招总结+云从语音算法面经+银行群面面经科大讯飞语音算法面经语音算法美团一面已挂科大讯飞智能语音方向值得去吗?语音算法oc科大讯飞语音算法二面荣耀一面语音算法面经,已挂荣耀_语音算法工程一面科大讯飞语音一面凉经8.18携程机器学习(语音方向)一面【vivo
- SVG 安装使用教程
小奇JAVA面试
安装使用教程SVG
一、SVG简介SVG(ScalableVectorGraphics,可缩放矢量图形)是一种基于XML的图像格式,用于描述二维图形。与传统的PNG、JPG等位图格式不同,SVG不会因放大而失真,适合展示图标、图表、动画和交互图形。二、SVG的应用场景网站图标和UI元素数据可视化(与ECharts、D3.js等结合)响应式Web设计中的矢量图动画和交互图形三、SVG安装环境(无需专门安装)3.1浏览器
- spark处理kafka的用户行为数据写入hive
月光一族吖
sparkkafkahive
在CentOS上部署Hadoop(Hadoop3.4.1)和Hive(Hive3.1.2)的详细步骤说明。这份指南面向单机安装(伪集群模式),如果需要搭建真正的多节点集群,各节点间的网络互访、SSH免密登录以及配置同步需进一步调整。注意:本指南假设你已拥有root权限或者具有sudo权限,并且系统连接Internet(用于下载安装包)。步骤中的版本号可根据实际需要进行更改。一、环境准备更新系统软件
- Spark 4.0的VariantType 类型以及内部存储
鸿乃江边鸟
大数据SQLsparksparksql大数据
背景本文基于Spark4.0总结Spark中的VariantType类型,用尽量少的字节来存储Json的格式化数据分析这里主要介绍Variant的存储,我们从VariantBuilder.buildJson方法(把对应的json数据存储为VariantType类型)开始:publicstaticVariantparseJson(JsonParserparser,booleanallowDuplic
- SVG VSCode:深度解析与最佳实践
froginwe11
开发语言
SVGVSCode:深度解析与最佳实践引言SVG(可缩放矢量图形)作为一种矢量图形格式,因其高度的可缩放性和矢量特性,在网页设计中得到了广泛应用。而VSCode(VisualStudioCode)作为一款流行的代码编辑器,同样在开发者中备受欢迎。本文将深入探讨SVG在VSCode中的使用,包括其优势、配置方法以及最佳实践。SVG简介什么是SVG?SVG(ScalableVectorGraphics
- 如何学习才能更好地理解人工智能工程技术专业和其他信息技术专业的关联性?
人工智能教学实践
python编程实践人工智能学习人工智能
要深入理解人工智能工程技术专业与其他信息技术专业的关联性,需要跳出单一专业的学习框架,通过“理论筑基-实践串联-跨学科整合”的路径构建系统性认知。以下是分阶段、可落地的学习方法:一、建立“专业关联”的理论认知框架绘制知识关联图谱操作方法:用XMind或Notion绘制思维导图,以AI为中心,辐射关联专业的核心技术节点。例如:AI(机器学习)├─数据支撑:大数据技术(Hadoop/Spark)+数据
- Spark从入门到熟悉(篇二)
本文介绍Spark的RDD编程,并进行实战演练,加强对编程的理解,实现快速入手知识脉络包含如下8部分内容:创建RDD常用Action操作常用Transformation操作针对PairRDD的常用操作缓存操作共享变量分区操作编程实战创建RDD实现方式有如下两种方式实现:textFile加载本地或者集群文件系统中的数据用parallelize方法将Driver中的数据结构并行化成RDD示例"""te
- Kafka生态整合深度解析:构建现代化数据架构的核心枢纽
Kafka生态整合深度解析:构建现代化数据架构的核心枢纽导语:在当今数据驱动的时代,ApacheKafka已经成为企业级数据架构的核心组件。本文将深入探讨Kafka与主流技术栈的整合方案,帮助架构师和开发者构建高效、可扩展的现代化数据处理平台。文章目录Kafka生态整合深度解析:构建现代化数据架构的核心枢纽一、Kafka与流处理引擎的深度集成1.1Kafka+ApacheSpark:批流一体化处理
- SOFA RPC SPI机制原理
Jooou
rpc
SOFARPC(ScalableOpenFinancialArchitectureRemoteProcedureCall)是一个高可扩展性、高性能、生产级的JavaRPC框架。其SPI(ServiceProviderInterface)机制为框架提供了强大的扩展能力,允许开发者在不修改框架核心代码的情况下,对框架的各个功能组件进行定制和扩展。以下将详细介绍SOFARPC的SPI机制原理。1.Jav
- Spark on Docker:容器化大数据开发环境搭建指南
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶大数据sparkdockerai
SparkonDocker:容器化大数据开发环境搭建指南关键词:Spark、Docker、容器化、大数据开发、分布式计算、开发环境搭建、容器编排摘要:本文系统讲解如何通过Docker实现Spark开发环境的容器化部署,涵盖从基础概念到实战部署的完整流程。首先分析Spark分布式计算框架与Docker容器技术的核心原理及融合优势,接着详细演示单节点开发环境和多节点集群环境的搭建步骤,包括Docker
- SeaTunnel 社区月报(5-6 月):全新功能上线、Bug 大扫除、Merge 之星是谁?
SeaTunnel
bugSeaTunnel开源数据集成大数据
在5月和6月,SeaTunnel社区迎来了一轮密集更新:2.3.11正式发布,新增对Databend、Elasticsearch向量、HTTP批量写入、ClickHouse多表写入等多个连接器能力,全面提升了数据同步灵活性。同时,近100个修复与优化PR合入,涵盖Spark引擎并行性修复、Paimon精度兼容性增强、Mongo-CDCExactlyOnce默认值优化、OracleDDL类型支持补全
- Spark从入门到熟悉(篇三)
小新学习屋
数据分析spark大数据分布式
本文介绍Spark的DataFrame、SparkSQL,并进行SparkSQL实战,加强对编程的理解,实现快速入手知识脉络包含如下7部分内容:RDD和DataFrame、SparkSQL的对比创建DataFrameDataFrame保存成文件DataFrame的API交互DataFrame的SQL交互SparkSQL实战参考资料RDD和DataFrame、SparkSQL的对比RDD对比Data
- 大数据集群架构hadoop集群、Hbase集群、zookeeper、kafka、spark、flink、doris、dataeas(二)
争取不加班!
hadoophbasezookeeper大数据运维
zookeeper单节点部署wget-chttps://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/apache-zookeeper-3.8.4-bin.tar.gz下载地址tarxfapache-zookeeper-3.8.4-bin.tar.gz-C/data/&&mv/data/apache-zookeeper-3.8.4-bin//data/zoo
- Hadoop、Spark、Flink 三大大数据处理框架的能力与应用场景
一、技术能力与应用场景对比产品能力特点应用场景Hadoop-基于MapReduce的批处理框架-HDFS分布式存储-容错性强、适合离线分析-作业调度使用YARN-日志离线分析-数据仓库存储-T+1报表分析-海量数据处理Spark-基于内存计算,速度快-支持批处理、流处理(StructuredStreaming)-支持SQL、ML、图计算等-支持多语言(Scala、Java、Python)-近实时处
- Rust标量、复合类型与自定义类型、第三方并发结构
穗余
Rustrust数据结构python
以下是Rust中标量类型、对象类型(含结构体、复合类型、堆分配类型)以及常用第三方并发数据结构的完整分类、示例和区别对比,帮助你系统掌握它们的本质异同:一、标量类型(ScalarTypes,存储于栈上)标量是最基本的值类型,固定大小,存储在栈上,实现Copy,性能极高。类别示例类型示例代码特性说明整数i8i128,u8u128,isize,usizeletx:u32=42;固定大小,快速拷贝浮点数
- SeaTunnel 社区月报(5-6 月):全新功能上线、Bug 大扫除、Merge 之星是谁?
数据库
在5月和6月,SeaTunnel社区迎来了一轮密集更新:2.3.11正式发布,新增对Databend、Elasticsearch向量、HTTP批量写入、ClickHouse多表写入等多个连接器能力,全面提升了数据同步灵活性。同时,近100个修复与优化PR合入,涵盖Spark引擎并行性修复、Paimon精度兼容性增强、Mongo-CDCExactlyOnce默认值优化、OracleDDL类型支持补全
- spark数据处理练习题番外篇【上】
一.单选题(共23题,100分)1.(单选题)maven依赖应该加在哪个文件中?A.pom.xmlB.log4j.propertiesC.src/main/scala.resourceD.src/test/scala.resource正确答案:A:pom.xml;Maven依赖应该添加在pom.xml文件中,这是Maven项目的核心配置文件。解释:pom.xml(ProjectObjectMode
- 基于django+Spark+大数据+爬虫技术的国漫推荐与可视化平台设计和实现(源码+论文+部署讲解等)
阿勇学长
大数据项目实战案例Java精品毕业设计实例Python数据可视化项目案例大数据djangospark国漫推荐与可视化平台毕业设计Java
博主介绍:✌全网粉丝50W+,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等
- opencv —— floodFill 漫水填充法 实现证件照换背景
老干妈就泡面
opencv人工智能计算机视觉
漫水填充:floodFill函数简单来说,漫水填充就是自动选中与种子像素相连的区域,利用指定颜色进行区域颜色填充。Windows画图工具中的油漆桶功能和Photoshop的魔法棒选择工具,都是漫水填充的改进和延伸。//第一个版本intfloodFill(InputOutputArrayimage,PointseedPoint,ScalarnewVal,Rect*rect=0,ScalarloDif
- spark写入hive表问题
qq_42265026
sparkhive大数据
1、httpclient发送post请求,当返回的数据过大时,报错socketclosed这个原因是客户端主动将连接关闭,根本原因是将httpclient。execute的返回结果closeableResponse作为a方法的返回结果,在b方法中进行解析虽然在b方法中没有关闭closeableResponse,但是在a方法中返回closeableResponse后,会进行httppost.real
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep