- C++11堆操作深度解析:std::is_heap与std::is_heap_until原理解析与实践
文章目录堆结构基础与函数接口堆的核心性质函数签名与核心接口std::is_heapstd::is_heap_until实现原理深度剖析std::is_heap的验证逻辑std::is_heap_until的定位策略算法优化细节代码实践与案例分析基础用法演示自定义比较器实现最小堆检查边缘情况处理性能分析与实际应用时间复杂度对比典型应用场景与手动实现的对比注意事项与最佳实践迭代器要求比较器设计C++标
- FPGA小白到项目实战:Verilog+Vivado全流程通关指南(附光学类岗位技能映射)
阿牛的药铺
算法移植部署fpga开发verilog
FPGA小白到项目实战:Verilog+Vivado全流程通关指南(附光学类岗位技能映射)引言:为什么这个FPGA入门路线能帮你快速上岗?本文设计了一条**"Verilog语法→工具链操作→光学项目实战→岗位技能对标"的阶梯式学习路径。不同于泛泛而谈的FPGA教程,我们聚焦光学类产品开发**核心能力(时序接口设计、图像处理算法移植、高速接口应用),通过3个递进式项目(从LED闪烁到图像边缘检测),
- 霍夫变换(Hough Transform)算法原来详解和纯C++代码实现以及OpenCV中的使用示例
点云SLAM
算法图形图像处理算法opencv图像处理与计算机视觉算法直线提取检测目标检测霍夫变换算法
霍夫变换(HoughTransform)是一种经典的图像处理与计算机视觉算法,广泛用于检测图像中的几何形状,例如直线、圆、椭圆等。其核心思想是将图像空间中的“点”映射到参数空间中的“曲线”,从而将形状检测问题转化为参数空间中的峰值检测问题。一、霍夫变换基本思想输入:边缘图像(如经过Canny边缘检测)输出:一组满足几何模型的形状(如直线、圆)关键思想:图像空间中的一个点→参数空间中的一个曲线参数空
- Matplotlib-图像处理与可视化
Matplotlib-图像处理与可视化一、图像数据的本质:从数组到像素二、基础操作:加载与显示图像1.加载图像数据2.显示单张图像3.显示灰度图像三、进阶可视化:通道分离与色彩调整1.分离RGB通道2.调整亮度与对比度四、实用技巧:色彩映射与像素值分析1.自定义色彩映射(Colormap)2.像素值分布直方图五、多图对比与标注:算法结果可视化1.边缘检测结果对比2.图像标注:突出感兴趣区域六、注意
- Python OpenCV教程从入门到精通的全面指南【文末送书】
一键难忘
pythonopencv开发语言
文章目录PythonOpenCV从入门到精通1.安装OpenCV2.基本操作2.1读取和显示图像2.2图像基本操作3.图像处理3.1图像转换3.2图像阈值处理3.3图像平滑4.边缘检测和轮廓4.1Canny边缘检测4.2轮廓检测5.高级操作5.1特征检测5.2目标跟踪5.3深度学习与OpenCVPythonOpenCV从入门到精通【文末送书】PythonOpenCV从入门到精通OpenCV(Ope
- C#高级技巧:打造风格化Windows窗体应用
一曲歌长安
本文还有配套的精品资源,点击获取简介:WindowsForms是C#开发桌面应用的工具,可实现个性化和功能丰富的用户界面。本项目重点介绍了如何通过C#和.NET框架定制WinForms应用的外观和行为,包括自定义外观、主题、透明度、动画、状态管理、非模态对话框、拖放功能、自定义边缘和标题栏,以及扩展功能。通过掌握这些技术要点,开发者可以创建美观和交互性强的应用程序。1.自定义WinForms外观自
- OpenCV入门到精通:AI视觉处理的完整指南
AI云原生与云计算技术学院
人工智能opencv计算机视觉ai
OpenCV入门到精通:AI视觉处理的完整指南关键词:OpenCV、计算机视觉、图像预处理、目标检测、AI视觉应用摘要:本文是一份面向AI视觉爱好者的OpenCV完整学习指南。从OpenCV的核心概念讲起,结合生活案例、代码示例和项目实战,逐步拆解图像读取/显示、灰度化、边缘检测、目标检测等关键技术。无论你是想入门计算机视觉的新手,还是希望用OpenCV解决实际问题的开发者,都能通过本文掌握从理论
- 医疗金融预测与语音识别中的模型优化及可解释性技术突破
智能计算研究中心
其他
内容概要随着人工智能技术的纵深发展,模型优化与可解释性技术正在重塑医疗诊断、金融预测及语音识别领域的应用范式。在医疗领域,基于自适应学习的动态参数调整机制,结合迁移学习的跨场景知识复用,显著提升了疾病筛查模型的泛化能力;而金融预测场景中,联邦学习框架通过分布式数据协作,在保障隐私安全的前提下,实现了风险预测模型的多维度优化。语音识别领域则依托边缘计算架构,将模型压缩技术与实时推理引擎结合,有效解决
- 动态时间规整(Dynamic Time Warping,DTW)补充案例
EmorZhong
python人工智能机器学习算法动态规划
DTW的边界条件是确保累积距离矩阵计算“有起点、有规则”的基础,它规定了矩阵中第一行和第一列的累积距离如何计算(因为这两行/列是路径的“起点边缘”,没有“上一步”的全部选择)。下面结合具体场景和例子展开说明:为什么需要边界条件?累积距离矩阵(D[i][j])的核心递归公式是:[D[i][j]=\text{dist}[i][j]+\min\left(D[i-1][j],\D[i][j-1],\D[i
- 【Nature Communications】超高介电常数材料 Hf0.5Zr0.5O2(HZO)
2025年3月8日,复旦大学的AnQuanJiang等人在《NatureCommunications》期刊发表了题为《UltrahighdielectricpermittivityinHf0.5Zr0.5O2thin-filmcapacitors》的文章,基于原子层沉积(ALD)技术制备Hf0.5Zr0.5O2(HZO)薄膜电容器并结合近边缘等离子体处理的方法,研究了其介电性能,实验结果表明在Hf
- 【氮化镓】p-GaN栅极退化的温度和结构相关性
北行黄金橘
氮化镓器件可靠性人工智能机器学习学习科学研究科技
论文总结:本文献深入研究了带有p-GaN栅极的正常关断型(normally-off)高电子迁移率晶体管(GaN-HEMTs)在恒定电压应力下的时序退化行为。通过直流特性分析和温度依赖性分析,研究了故障时间(TTF)与应力温度和器件几何结构的依赖性。结果显示,p-GaN栅极晶体管在7.2V的栅偏压下可达到20年的使用寿命,表明了良好的稳定性。故障时间与应力电压呈指数关系,且退化主要发生在栅极边缘而非
- 电铸筛网 vs 传统筛网:究竟胜在哪些关键维度?
在工业筛选领域,电铸筛网与传统筛网的较量从未停歇。看似功能相似的两种产品,实则在核心性能上存在代际差异,这些差异直接决定了它们在不同场景中的适用性。第一维度:精度控制传统筛网依赖编织或冲压工艺,网孔尺寸误差常超过5%,且易出现孔形不规则、边缘毛糙等问题。而电铸筛网通过金属离子逐层沉积成型,网孔精度可控制在±1微米内,孔形一致性达99%以上。在电子浆料过滤、医药无菌筛分等微米级需求场景中,这种精度差
- OpenCV哈希算法------Marr-Hildreth 边缘检测哈希算法
村北头的码农
OpenCVopencv哈希算法人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述该类实现了Marr-Hildreth边缘检测哈希算法(Marr-HildrethHash),用于图像相似性比较。它基于Marr-Hildreth边缘检测器(也称为LaplacianofGaussian,LoG)提取图像边缘信息,并生成二进制哈希值。这种哈希方法对图
- Vercel平台:前端项目部署与全球加速的最佳实践
本文还有配套的精品资源,点击获取简介:Vercel是一个前端开发人员友好的云平台,专注于前端应用的快速部署和高效分发。该平台提供即时代码预览、自定义域名、全球边缘网络和无缝团队协作等高级功能,以提供最佳的开发体验和最终用户性能。Vercel还支持零配置部署和自动SSL证书,以及与SCSS集成,使得前端项目的构建和部署变得更加简单快捷。本文将探讨如何使用Vercel部署前端项目,并着重于如何利用其特
- YOLOv11模型轻量化挑战技术文章大纲
程序猿全栈の董(董翔)
githubYOLOv11
模型轻量化的背景与意义目标检测模型YOLOv11的性能与应用场景轻量化的必要性:边缘设备部署、实时性需求、计算资源限制轻量化面临的挑战:精度与速度的权衡、模型压缩方法的选择YOLOv11的轻量化技术方向网络结构优化:深度可分离卷积、分组卷积、瓶颈设计模型剪枝:结构化剪枝与非结构化剪枝策略知识蒸馏:教师-学生模型框架与特征匹配方法量化与低比特压缩:FP16/INT8量化与二值化网络轻量化实现的具体方
- AI 边缘算力关键技术白皮书 2024
Python编程杰哥
人工智能语言模型自然语言处理大数据算法
1边缘算力关键技术边缘算力的技术体系架构如图1所示,主要包括:边缘算力基础设施、边缘算力网络、边缘智能、边缘算力安全等四方面。其中,边缘算力基础设施聚焦于计算、存储、网络等物理硬件资源及其虚拟化,边缘算力网络关注分布式算力资源的感知、度量、并网、调度、管控等,边缘智能涉及系统部署、数据处理、模型优化、边缘训练、边缘推理等关键问题,边缘算力安全则贯穿始终提供对从基础设施到上层服务的全面安全保障。图1
- 异构推理系统动态负载调度与资源分配实战:多节点协同、任务绑定与智能分发策略全解析
观熵
大模型高阶优化技术专题算法人工智能
异构推理系统动态负载调度与资源分配实战:多节点协同、任务绑定与智能分发策略全解析关键词异构调度、Kubernetes调度器、GPU任务绑定、MIG分配、推理流量调度、服务亲和性、任务隔离、资源优先级、边缘协同、动态算力管理摘要在AI推理系统的生产级部署中,单一自动扩缩容机制已无法满足实际复杂环境中对资源利用率、任务延迟与系统稳定性的多重要求。特别是在GPU/NPU/CPU并存的异构计算集群中,运行
- 跨集群异构推理系统协同调度实战:边缘-中心联合部署与多租户算力调度架构解析
观熵
大模型高阶优化技术专题架构人工智能
跨集群异构推理系统协同调度实战:边缘-中心联合部署与多租户算力调度架构解析关键词跨集群调度、边缘推理、GPU-NPU协同、KubeFed、资源分域、任务下发、多租户隔离、MLOps联邦调度、推理闭环、负载均衡摘要在AI推理系统进入产业级部署阶段后,模型服务逐步从中心化集群向边缘设备、跨地理分布式节点延伸,形成典型的“中心+边缘”异构多集群形态。为实现高效资源利用与低时延响应,推理系统需要支持节点异
- 【图像处理基石】如何检测到画面中的ppt并对其进行增强?
1.入门版ppt检测增强工具我们介绍一个使用Python进行PPT检测并校正画面的实现方案。这个方案主要利用OpenCV进行图像处理,通过边缘检测和透视变换技术来识别并校正PPT画面。importcv2importnumpyasnpfromPILimportImageimportmatplotlib.pyplotaspltclassPPTDetector:def__init__(self):#初始
- 【目标检测】Yolov7 的 ELAN 和 E-ELAN 模块演进(涉及到分组卷积,cardinality,梯度路径)
Jiangnan_Cai
深度学习目标检测YOLO人工智能
感觉从YOLOv6开始,YOLOv6系列感觉优化点都着重于推理速度上面,YOLOv6的RepBlock重参数化,给我的感觉就是算子融合进行加速。而YOLOv7,为了在各种架构的边缘设备上获得极致的推理速度。YOLOv7的工作:新的bagoffreebies(有效的训练技巧,不会增加推理的计算量)有规划的重参数化模型(不同边缘设备架构,不同的重参数化方法)新的动态标签分配方法为了更好的理解YOLOv
- 边缘人工智能与医疗AI融合发展路径:技术融合与应用前景(上)
Allen_Lyb
数智化医院2025人工智能健康医疗算法
引言人工智能技术正以前所未有的速度改变着医疗保健领域,从辅助诊断到个性化治疗,AI应用的广度和深度不断拓展。在这一浪潮中,边缘人工智能(EdgeAI)作为一种新兴技术范式,正成为推动医疗AI创新的关键力量。边缘AI区别于传统的云计算模式,它将数据处理和AI模型部署在数据源头附近,实现快速响应和隐私保护。这种特性使其在医疗保健领域具有独特优势,特别是在实时监测、紧急响应和患者隐私保护等方面。边缘AI
- system Verilog:clocking中定义信号为input和output的区别
加载-ing
systemverilog
在SystemVerilog中,clocking块用于定义时钟块,这通常用于描述时钟边缘和同步的输入/输出行为,特别是在测试平台和硬件接口描述中。在下述两个代码示例中,主要区别在于a被定义为一个input还是output。当a被定义为input时:systemverilogclockingcb@(posedgeclk);inputa;endclocking这意味着a是一个从被测试设计(DUT)到测
- 破壁制裁:大马士革证券交易所证券交易系统搭建方案(叙利亚)
——基于边缘计算、RWA清算与抗断网架构的叙利亚金融新基建今日金融战场速报(2025年7月9日):特朗普签署行政令对进口铜征收50%关税,并威胁对药品加征200%关税,引发纽铜单日暴涨13%,创1968年来最大涨幅。与此同时,胡塞武装袭击红海商船推高油价至两周峰值,避险资本涌入黄金与数字资产,叙利亚黑市里亚尔汇率崩至58.3万:1美元——在制裁与动荡中,技术正成为被孤立经济体的生存氧气。一、叙利亚
- 创客匠人:从 “内容输出” 到 “关系经营”,解锁 IP 变现的本质
创小匠
tcp/ip网络协议网络
当“IP变现”成为创业圈的热词,许多创始人陷入“内容越专业,变现越困难”的怪圈。创客匠人通过深度观察得出结论:IP变现的关键,不在于输出多少知识,而在于能否从“打造影响力”转向“构建关系链”。这种转变重新定义了创始人IP打造的路径,让知识变现回归“人与人连接”的本质。真实感是IP穿透流量的核心力量。创客匠人发现,成功的创始人IP都有一个共性:不刻意塑造“完美人设”,而是以真实面目面对用户。有人担心
- CDN分发加速技术详解
Dream Algorithm
网络架构
CDN核心原理与架构1.基本工作原理边缘节点缓存:将内容分发到离用户最近的边缘服务器DNS智能解析:引导用户访问最优节点内容预取与缓存:热点内容提前部署到边缘2.典型CDN架构组成用户请求→智能DNS→边缘节点(EdgeServer)↑二级节点(Mid-tier)↑源站(OriginServer)关键加速技术1.静态内容加速缓存策略优化:#Nginx缓存配置示例location~*\.(jpg|j
- Drizzle ORM:轻量级数据库工具
编辑器前端
DrizzleORM:轻量级数据库工具在上一章中,我们探讨了CloudflareD1如何作为一款高性能、低成本的边缘数据库解决方案,彻底改变了我们对数据库架构的认知.但一般来说,我们很少在项目里裸写sql,所以我们需要一个能简化操作和开发的ORM工具,但市面上绝大多数的ORM对于这种ServerLess数据库的适配很差,需要解决各种依赖问题。那么在尝试了一圈后,发现Drizzle是最好的搭配方案,
- ShaderGraph节点解析(146):面朝向判断节点(Is Front Face Node)详解
目录一、前言二、节点基础2.1功能概述2.2端口详解2.3底层实现三、工作原理3.1面朝向定义3.2法线与面朝向的关系3.3与背面剔除的区别四、应用场景4.1双面材质差异化渲染场景:正面显示纹理,背面显示纯色或另一种纹理4.2背面发光效果场景:物体背面显示自发光,创造边缘光或轮廓效果4.3翻转动画场景:当物体旋转导致正面变为背面时,显示过渡效果(如透明度变化)4.4碰撞检测可视化场景:在碰撞检测中
- Security Fabric 安全架构
江苏思维驱动智能研究院有限公司
fabric安全架构运维
各组织都在加快推进数字化创新举措,所以确保其安全性跟上当今复杂而瞬息万变的威胁趋势至关重要。由于网络边缘、随处办公和多云模式呈现爆发式增长,以往耳熟能详的“网络边界”如今已分散在整个基础设施中。组织常常会“按上”各不相干的安全工具,以单独保护网络中的某功能或某一区块。但是,这种做法导致几乎无法维持组织级的可见性和一致策略。鉴于攻击序列变得更加复杂和创新,各组织都在竭力提供符合预期的安全高性能用户到
- 技术演进中的开发沉思-29 MFC系列:关于win32
chilavert318
熬之滴水穿石windows开发语言c++
不得不提的,是win32程序已经走在淘汰的边缘了,但今天还是想说说它。若把计算机系统比作一座不断翻新的城市,Win32就像那些承载着城市记忆的老街区。64位系统的普及确实像拓宽了主干道,Win64作为新拓宽的车道,能跑更大更重的“卡车”(处理更大内存、更复杂运算),但老街区的石板路(Win32)依然有它的用处——那些只需要自行车就能到达的目的地(轻量工具、嵌入式设备),没必要非得开卡车。目前国产化
- 软件架构设计中消息总线的应用详解
半青年
消息总线网络协议信息与通信kafkaMQTT物联网系统架构
目录一、消息总线的核心原理1.解耦与异步通信2.消息路由与协议适配3.可靠性保障二、消息总线的核心功能1.动态扩展与负载均衡2.容错与高可用性3.数据转换与集成三、典型应用场景1.微服务架构中的服务解耦2.大规模数据流处理3.复杂事务管理4.边缘计算与物联网四、设计考量与选型建议1.通信模式选择2.协议与生态适配3.容错与监控五、案例分析:SpringCloudBus与物联网平台1.SpringC
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key