一次小作业的记录
学习链接
以下几个是看了后觉得很好的链接。留作记录。
- An Implementation and Explanation of the Random Forest in Python
https://towardsdatascience.com/an-implementation-and-explanation-of-the-random-forest-in-python-77bf308a9b76
上面链接的github
https://github.com/WillKoehrsen/Machine-Learning-Projects/blob/master/Random%20Forest%20Tutorial.ipynb
这是链接的中文翻译。英语有困难的可以看
独家 | 一文读懂随机森林的解释和实现(附python代码)-数据派THU
- Understanding AUC - ROC Curve
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
Understanding Confusion Matrix
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
- https://developers.google.com/——Classification: ROC Curve and AUC
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc#:~:text=AUC%20stands%20for%20%22Area%20under,across%20all%20possible%20classification%20thresholds.
记录笔记
以下整理来自前面链接
混淆矩阵
AUC - ROC
AUC (Area Under The Curve)
ROC (Receiver Operating Characteristics)
AUROC (Area Under the Receiver Operating Characteristics)
整体来看,混淆矩阵可以评价分类模型的效果。预测出多少真值,有多高精确度等等
而ROC和AUC是对分类出的positive的进一步评价。看分类效果。
随机森林
看第一部分链接内容就好,不多记录。