7-2 Color the Tree (PAT ADSAA)

#include 
#include 
#include 
#include 

struct node{
    int key;
    int minHeight;
    int maxHeight;
};

int K, N;
bool flag;
node* root;
std::vector postorder, inorder;
std::map mp;

node* buildTree(int inL, int inR, int postL, int postR){
    if(inL == inR){
        return nullptr;
    }
    node* tmp = new node;
    tmp->key = postorder[postR - 1];
    int loc = mp[postorder[postR - 1]];
    int minLeft, maxLeft, minRight, maxRight;
    node* left = buildTree(inL, loc, postL, postL + loc - inL);
    node* right = buildTree(loc + 1, inR, postL + loc - inL, postR - 1);
    if(left){
        minLeft = left->minHeight;
        maxLeft = left->maxHeight;
    } else{
        minLeft = 0;
        maxLeft = 0;
    }
    if(right){
        minRight = right->minHeight;
        maxRight = right->maxHeight;
    } else{
        minRight = 0;
        maxRight = 0;
    }
    tmp->minHeight = std::min(minLeft, minRight) + 1;
    tmp->maxHeight = std::max(maxLeft, maxRight) + 1;
    if(tmp->maxHeight > 2 * tmp->minHeight){
        flag = false;
    }
    return tmp;
}

int main(){
    scanf("%d", &K);
    for(int i = 0; i < K; ++i){
        scanf("%d", &N);
        postorder.resize(N);
        for(int j = 0; j < N; ++j){
            scanf("%d", &postorder[j]);
        }
        inorder = postorder;
        sort(inorder.begin(), inorder.end());
        for(int j = 0; j < N; ++j){
            mp[inorder[j]] = j;
        }
        flag = true;
        root = buildTree(0, N, 0, N);
        printf("%s\n", flag ? "Yes" : "No");
    }
    return 0;
}

题目如下:

There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:

  • (1) Every node is either red or black.
  • (2) The root is black.
  • (3) Every leaf (NULL) is black.
  • (4) If a node is red, then both its children are black.
  • (5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.

For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not.

7-2 Color the Tree (PAT ADSAA)_第1张图片

7-2 Color the Tree (PAT ADSAA)_第2张图片

7-2 Color the Tree (PAT ADSAA)_第3张图片

Figure 1 Figure 2 Figure 3

For each given binary search tree, you are supposed to tell if it is possible to color the nodes and turn it into a legal red-black tree.

Input Specification:

Each input file contains several test cases. The first line gives a positive integer K (≤10) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary search tree. The second line gives the postorder traversal sequence of the tree. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print in a line Yes if the given tree can be turned into a legal red-black tree, or No if not.

Sample Input:

3
9
1 4 5 2 8 15 14 11 7
9
1 4 5 8 7 2 15 14 11
8
6 5 8 7 11 17 15 10

Sample Output:

Yes
No
Yes

你可能感兴趣的:(PAT,ADSAA,c++,算法,pat考试)