拿到8266模块,先用usb转ttl模块来进行有线指令调试
1、AT
2、AT+RES
...
主要目的是检查模块是否正常工作
需要了解一个知识点:8266的三种工作模式,AP、STA、双模
AP是作为路由器让手机或电脑进行连接,类似于手机热点
STA模式是指设备模式,可以比喻成8266就是一台手机,可以连接其他手机的热点或者WiFi配合服务端进行工作
双模即使两种模式都支持
第二步:用STM32F4来使用这个模块(sta模式下)
配置步骤如下:
1、连接WiFi
2、连接服务器
3、进入透传模式
4、发送数据传输指令
5、DIY
STM32这边用到的东西,两个串口,串口用来打印信息,串口2用来连接esp8266,我还配置了两个灯,用来反馈是否能接收到8266发送的数据,串口2需要配置中断
我全部都是在main.c中来操作
代码奉上
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include
#include
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
//串口接收缓存(1字节)
uint8_t buf=0;
//定义最大接收字节数 200,可根据需求调整
#define UART2_REC_LEN 200
// 接收缓冲, 串口接收到的数据放在这个数组里,最大UART1_REC_LEN个字节
uint8_t UART2_RX_Buffer[UART2_REC_LEN];
// 接收状态
// bit15, 接收完成标志
// bit14, 接收到0x0d
// bit13~0, 接收到的有效字节数目
uint16_t UART2_RX_STA=0;
#define SIZE 12
char buffer[SIZE];
char JRAP[] = "AT+CWMODE=3\r\n"; //进入双模模式
char LJWL[] = "AT+CWJAP=\"Redmi\",\"999999999\"\r\n"; //入网指令
char LJFWQ[] = "AT+CIPSTART=\"TCP\",\"192.168.9.178\",8880\r\n"; //连接服务器指令
char TCMS[] = "AT+CIPMODE=1\r\n"; //透传指令
char SJCS[] = "AT+CIPSEND\r\n"; //数据传输开始指令
char QCMK[] = "AT+RST\r\n"; //重启模块指令
char AT_OK_Flag = 0; //OK返回值的标志位
char AT_Connect_Net_Flag = 0; //WIFI GOT IP返回值的标志位
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
int fputc(int ch, FILE *f)
{ HAL_UART_Transmit(&huart2, (uint8_t *)&ch, 1, 0xffff);
return ch;
}
//输入重定向
int fgetc(FILE * f)
{ uint8_t ch = 0;
HAL_UART_Receive(&huart2,&ch, 1, 0xffff);
return ch;}
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
// 接收完成回调函数,收到一个数据后,在这里处理
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
// 判断中断是由哪个串口触发的
if(huart->Instance == USART2)
{
// 判断接收是否完成(UART1_RX_STA bit15 位是否为1)
if((UART2_RX_STA & 0x8000) == 0)
{
// 如果已经收到了 0x0d (回车),
if(UART2_RX_STA & 0x4000)
{
// 则接着判断是否收到 0x0a (换行)
if(buf == 0x0a)
{
// 如果 0x0a 和 0x0d 都收到,则将 bit15 位置为1
UART2_RX_STA |= 0x8000;
// 查看是否收到 WIFI GOT IP,这部分用于在WiFi连接不上的时候灯光提示
if(!strcmp(UART2_RX_Buffer, "WIFI GOT IP"))
AT_Connect_Net_Flag = 1;
// 查看是否收到 OK
if(!strcmp(UART2_RX_Buffer, "OK"))
AT_OK_Flag = 1;
// 查看是否收到 FAIL
if(!strcmp(UART2_RX_Buffer, "FAIL"))
{
int i = 0;
for (i = 0; i < 5; i++)
{
HAL_GPIO_TogglePin(GPIOF, GPIO_PIN_9);//如果这里板子的现象不是闪烁而是常亮,表示定时器中断优先级不够串口中断高
HAL_Delay(500);
}
printf(QCMK);
}
// 灯控指令
if(!strcmp(UART2_RX_Buffer, "R"))
HAL_GPIO_WritePin(GPIOF, GPIO_PIN_9, GPIO_PIN_RESET);
if(!strcmp(UART2_RX_Buffer, "G"))
HAL_GPIO_WritePin(GPIOF, GPIO_PIN_10, GPIO_PIN_RESET);
memset(UART2_RX_Buffer, 0, UART2_REC_LEN);
UART2_RX_STA = 0;
}
else
// 否则认为接收错误,重新开始
UART2_RX_STA = 0;
}
else // 如果没有收到了 0x0d (回车)
{
//则先判断收到的这个字符是否是 0x0d (回车)
if(buf == 0x0d)
{
// 是的话则将 bit14 位置为1
UART2_RX_STA |= 0x4000;
}
else
{
// 否则将接收到的数据保存在缓存数组里
UART2_RX_Buffer[UART2_RX_STA & 0X3FFF] = buf;
UART2_RX_STA++;
// 如果接收数据大于UART1_REC_LEN(200字节),则重新开始接收
if(UART2_RX_STA > UART2_REC_LEN - 1)
UART2_RX_STA = 0;
}
}
}
// 重新开启中断
HAL_UART_Receive_IT(&huart2, &buf, 1);
}
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART1_UART_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
HAL_NVIC_SetPriority(SysTick_IRQn,0,0);//提高系统时钟的中断优先级,与中断回调函数中的连接WiFi失败,灯光提示对应
// 开启接收中断
HAL_UART_Receive_IT(&huart2, &buf, 1);
HAL_UART_Transmit(&huart1, "USART1 is OK!\r\n", strlen("USART1 is OK!\r\n"), 100);
printf("hello\r\n");
//发送连接WiFi指令并等待成功
printf(LJWL);
while(!AT_OK_Flag) HAL_Delay(50);
AT_OK_Flag = 0;
//发送连服务器指令并等待成功
printf(LJFWQ);
while(!AT_OK_Flag) HAL_Delay(50);
AT_OK_Flag = 0;
//发送透传模式指令并等待成功
printf(TCMS);
while(!AT_OK_Flag) HAL_Delay(50);
AT_OK_Flag = 0;
//发送数据传输指令并等待成功
printf(SJCS);
while(!AT_OK_Flag) HAL_Delay(50);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
printf("mai\r\n");
HAL_UART_Transmit(&huart1, "hello\r\n", strlen("hello\r\n"), 100);
HAL_Delay(3000);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 168;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */