下载地址: Downloads | Apache SkyWalking
分别下载 apm 和 agent
wegt 下载连接如下;
wget https://archive.apache.org/dist/skywalking/java-agent/8.8.0/apache-skywalking-java-agent-8.8.0.tgz
wget https://archive.apache.org/dist/skywalking/8.8.1/apache-skywalking-apm-8.8.1.tar.gz
wegt https://www.elastic.co/cn/downloads/past-releases/elasticsearch-7-17-0
在打开安装目录的config下elasticsearch.yml 并添加以下配置
#http.port: 9200
cluster.name: CollectorDBCluster
path.data: /opt/elasticsearch-7.17.0/data
path.logs: /opt/elasticsearch-7.17.0/logs
network.host: 0.0.0.0
http.port: 9200
node.name: node-1
cluster.initial_master_nodes: ["node-1"]
# /opt/elasticsearch-7.17.0/bin/elasticsearch
storage:
selector: ${SW_STORAGE:elasticsearch}
elasticsearch:
namespace: ${SW_NAMESPACE:"CollectorDBCluster"}
clusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:服务器ip:9200}
protocol: ${SW_STORAGE_ES_HTTP_PROTOCOL:"http"}
connectTimeout: ${SW_STORAGE_ES_CONNECT_TIMEOUT:500}
socketTimeout: ${SW_STORAGE_ES_SOCKET_TIMEOUT:30000}
numHttpClientThread: ${SW_STORAGE_ES_NUM_HTTP_CLIENT_THREAD:0}
# user: ${SW_ES_USER:""}
# password: ${SW_ES_PASSWORD:""}
# trustStorePath: ${SW_STORAGE_ES_SSL_JKS_PATH:""}
# trustStorePass: ${SW_STORAGE_ES_SSL_JKS_PASS:""}
secretsManagementFile: ${SW_ES_SECRETS_MANAGEMENT_FILE:""} # Secrets management file in the properties format includes the username, password, which are managed by 3rd party tool.
dayStep: ${SW_STORAGE_DAY_STEP:1} # Represent the number of days in the one minute/hour/day index.
indexShardsNumber: ${SW_STORAGE_ES_INDEX_SHARDS_NUMBER:1} # Shard number of new indexes
indexReplicasNumber: ${SW_STORAGE_ES_INDEX_REPLICAS_NUMBER:1} # Replicas number of new indexes
# Super data set has been defined in the codes, such as trace segments.The following 3 config would be improve es performance when storage super size data in es.
superDatasetDayStep: ${SW_SUPERDATASET_STORAGE_DAY_STEP:-1} # Represent the number of days in the super size dataset record index, the default value is the same as dayStep when the value is less than 0
superDatasetIndexShardsFactor: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_SHARDS_FACTOR:5} # This factor provides more shards for the super data set, shards number = indexShardsNumber * superDatasetIndexShardsFactor. Also, this factor effects Zipkin and Jaeger traces.
superDatasetIndexReplicasNumber: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_REPLICAS_NUMBER:0} # Represent the replicas number in the super size dataset record index, the default value is 0.
indexTemplateOrder: ${SW_STORAGE_ES_INDEX_TEMPLATE_ORDER:0} # the order of index template
bulkActions: ${SW_STORAGE_ES_BULK_ACTIONS:5000} # Execute the async bulk record data every ${SW_STORAGE_ES_BULK_ACTIONS} requests
# flush the bulk every 10 seconds whatever the number of requests
# INT(flushInterval * 2/3) would be used for index refresh period.
flushInterval: ${SW_STORAGE_ES_FLUSH_INTERVAL:15}
concurrentRequests: ${SW_STORAGE_ES_CONCURRENT_REQUESTS:2} # the number of concurrent requests
resultWindowMaxSize: ${SW_STORAGE_ES_QUERY_MAX_WINDOW_SIZE:10000}
metadataQueryMaxSize: ${SW_STORAGE_ES_QUERY_MAX_SIZE:5000}
segmentQueryMaxSize: ${SW_STORAGE_ES_QUERY_SEGMENT_SIZE:200}
profileTaskQueryMaxSize: ${SW_STORAGE_ES_QUERY_PROFILE_TASK_SIZE:200}
oapAnalyzer: ${SW_STORAGE_ES_OAP_ANALYZER:"{\"analyzer\":{\"oap_analyzer\":{\"type\":\"stop\"}}}"} # the oap analyzer.
oapLogAnalyzer: ${SW_STORAGE_ES_OAP_LOG_ANALYZER:"{\"analyzer\":{\"oap_log_analyzer\":{\"type\":\"standard\"}}}"} # the oap log analyzer. It could be customized by the ES analyzer configuration to support more language log formats, such as Chinese log, Japanese log and etc.
advanced: ${SW_STORAGE_ES_ADVANCED:""}
主要需要修改
storage:
selector: ${SW_STORAGE:elasticsearch}
我的版本是8.8 如果你是低版本 且Elasticsearch7 ,就配置
storage:
selector: ${SW_STORAGE:elasticsearch7}
然后修改elasticsarch的服务ip和端口就可以了
# /opt/apache-skywalking-apm-bin/bin/startup.sh
每个jar单独一个文件夹
分别 orderservice、gatway、userservice
version: "3.2"
services:
# nacos:
# image: nacos/nacos-server
# environment:
# MODE: standalone
# ports:
# - "9010:8848"
userservice:
env_file: .env
environment:
- USER_NAME=${COMNAME}
build: ./user-service
orderservice:
build: ./order-service
gateway:
build: ./gateway
ports:
- "9013:9013"
.env 可以指定运行参数
## docker-compose环境变量
## 测试docker绑定参数
COMNAME=abcdefg129001
每个服务文件夹里面包含以下几个文件
其中dockerfile 如下;
# 将下面的代码放入Dockerfile文件中,复制三份分别放入三个文件夹
FROM java:8
COPY ./app.jar /tmp/app.jar
COPY ./agent /tmp/agent
ENTRYPOINT java -javaagent:/tmp/agent/skywalking-agent.jar -Dskywalking.agent.service_name=gatway -Dskywalking.collector.backend_service=sky服务器ip:11800 -jar /tmp/app.jar
其他几个服务相同配置
每个springboot小项目单独添加依赖:
<!--打印skywalking的TraceId到日志-->
org.apache.skywalking
apm-toolkit-logback-1.x
8.8.0
org.apache.skywalking
apm-toolkit-trace
8.8.0
其中版本号要与skywalking一致
日志可以使用logback (其他日志框架可以自行google)
<configuration>
<springProperty scope="context" name="base.path" source="logging.file.path" defaultValue="${user.home}/kenlogs"/>
<springProperty scope="context" name="app.name" source="spring.application.name" defaultValue="applog"/>
<property name="log.path" value="${base.path}/${app.name}"/>
<property name="log.pattern" value="%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - [%tid] - %msg%n"/>
<appender name="stdout" class="ch.qos.logback.core.ConsoleAppender">
<encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
<layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.TraceIdPatternLogbackLayout">
<pattern>${log.pattern}pattern>
layout>
encoder>
appender>
<appender name="SKYWALKING" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender">
<encoder>
<pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n
pattern>
<charset>UTF-8charset>
encoder>
appender>
<appender name="file" class="ch.qos.logback.core.rolling.RollingFileAppender">
<rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
<FileNamePattern>${log.path}-%d{yyyy-MM-dd}.%i.logFileNamePattern>
<MaxHistory>30MaxHistory>
<MaxFileSize>3KBMaxFileSize>
rollingPolicy>
<encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
<layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.TraceIdPatternLogbackLayout">
<pattern>${log.pattern}pattern>
layout>
encoder>
appender>
<root level="INFO">
<appender-ref ref="SKYWALKING"/>
<appender-ref ref="file"/>
root>
configuration>
其中最重要的是
appender name=“SKYWALKING” class 指定正确
同时要日志生效;必须修改服务 -javaagent的config/agent.config ; 我开始就是没指定这个;日志一直没生成
plugin.toolkit.log.grpc.reporter.server_host=${SW_GRPC_LOG_SERVER_HOST:skywalking服务ip}
plugin.toolkit.log.grpc.reporter.server_port=${SW_GRPC_LOG_SERVER_PORT:11800}
plugin.toolkit.log.grpc.reporter.max_message_size=${SW_GRPC_LOG_MAX_MESSAGE_SIZE:10485760}
plugin.toolkit.log.grpc.reporter.upstream_timeout=${SW_GRPC_LOG_GRPC_UPSTREAM_TIMEOUT:30}
plugin.toolkit.log.transmit_formatted=${SW_PLUGIN_TOOLKIT_LOG_TRANSMIT_FORMATTED:true}
测试使用日志
简单点直接controller使用一个;真实业务应该在service层比较合适
private final Logger log = LoggerFactory.getLogger(*controller.class);
代码里面获取日志的tranceid
String traceId = TraceContext.traceId();
以上配置保留一天;其他详细需求可以自行百度。