Flink中有一个过时的sink
方法:writeAsCsv
,这个方法是将数据写入CSV
文件中,有时候我们会发现程序启动后,打开文件查看没有任何数据,日志信息中也没有任何报错,这里我们结合源码分析一下这个原因.
这里先看一下数据处理的代码
代码中我是使用的自定义数据源生产数据的方式,为了方便测试
import lombok.*;
import org.apache.commons.lang3.RandomUtils;
import org.apache.flink.core.fs.FileSystem;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import java.util.Random;
/**
* @Author: J
* @Version: 1.0
* @CreateTime: 2023/6/19
* @Description: 自定义数据源测试
**/
public class FlinkCustomizeSource {
public static void main(String[] args) throws Exception {
// 创建流环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 设置并行度
env.setParallelism(1); // 这里的并行度设置为几就会生成多少个csv文件
// 添加自定义数据源
DataStreamSource<CustomizeBean> dataStreamSource = env.addSource(new customizeSource());
// 先将数据转换成Tuple类型,这样才能写入csv中
SingleOutputStreamOperator<Tuple4<String, Integer, String, String>> tuple4Stream = dataStreamSource.map(
bean -> Tuple4.of(bean.getName(), bean.getAge(), bean.getGender(), bean.getHobbit())
).returns(new TypeHint<Tuple4<String, Integer, String, String>>() {});
// 选择csv类型的sink,模式使用的覆盖
tuple4Stream.writeAsCsv("/Users/xxx/data/testData/test.csv", FileSystem.WriteMode.OVERWRITE);
env.execute();
}
}
// 自定义数据源需要实现SourceFunction接口,注意这个接口是单机的数据源,如果是想自定义分布式的数据源需要集成RichParallelSourceFunction类
class customizeSource implements SourceFunction<CustomizeBean> {
int flag;
// Job执行的线程
@Override
public void run(SourceContext ctx) throws Exception {
/*这个方法里就是具体的数据逻辑,实际内容要根据业务需求编写,这里只是为了演示方便*/
CustomizeBean customizeBean = new CustomizeBean();
String[] genders = {"M", "W"};
String[] hobbits = {"篮球运动爱好者", "钓鱼爱好者", "乒乓球运动爱好者", "美食爱好者", "羽毛球运动爱好者", "天文知识爱好者", "旅游爱好者", "书法爱好者", "非遗文化爱好者", "网吧战神"};
while (flag != 100) {
// 这里自定义的Bean作为数据源
customizeBean.setAge(RandomUtils.nextInt(18, 80)); // 年龄
customizeBean.setName("A-" + new Random().nextInt()); // 姓名
customizeBean.setGender(genders[RandomUtils.nextInt(0, genders.length)]); // 性别
customizeBean.setHobbit(hobbits[RandomUtils.nextInt(0, hobbits.length)]); // 爱好
// 将数据收集
ctx.collect(customizeBean);
// 睡眠时间是为了控制数据生产的速度,演示效果更加明显
Thread.sleep(1000);
}
}
// Job取消时就会调用cancel方法
@Override
public void cancel() {
// flag为100时就会停止程序
flag = 100;
}
}
@Getter
@Setter
@ToString
@NoArgsConstructor
@AllArgsConstructor
class CustomizeBean{
private String name;
private int age;
private String gender;
private String hobbit;
}
上面的代码中我们使用自定义数据源的方式(java bean[CustomizeBean]
),通过设置Thread.sleep(1000)
可以固定每秒生成一条数据.这里我们先看一下存储CSV
文件的目录
通过上图可以看到程序没有启动时,目录是空的,这里我们启动一下程序
日志内容如下
[2023-06-19 15:26:37,755]-[INFO] -org.apache.flink.runtime.state.changelog.StateChangelogStorageLoader -3206 -org.apache.flink.runtime.state.changelog.StateChangelogStorageLoader.load(StateChangelogStorageLoader.java:98).load(98) | Creating a changelog storage with name 'memory'.
[2023-06-19 15:26:37,766]-[INFO] -org.apache.flink.runtime.taskexecutor.TaskExecutor -3217 -org.apache.flink.runtime.taskexecutor.TaskExecutor.submitTask(TaskExecutor.java:757).submitTask(757) | Received task Source: Custom Source -> Map -> Sink: Unnamed (1/1)#0 (965035c5eef2b8f28ffcfc309b92e203), deploy into slot with allocation id b691e34573507d585516decbedb36384.
[2023-06-19 15:26:37,768]-[INFO] -org.apache.flink.runtime.taskmanager.Task -3219 -org.apache.flink.runtime.taskmanager.Task.transitionState(Task.java:1080).transitionState(1080) | Source: Custom Source -> Map -> Sink: Unnamed (1/1)#0 (965035c5eef2b8f28ffcfc309b92e203) switched from CREATED to DEPLOYING.
[2023-06-19 15:26:37,769]-[INFO] -org.apache.flink.runtime.taskexecutor.slot.TaskSlotTableImpl -3220 -org.apache.flink.runtime.taskexecutor.slot.TaskSlotTableImpl.markExistingSlotActive(TaskSlotTableImpl.java:388).markExistingSlotActive(388) | Activate slot b691e34573507d585516decbedb36384.
[2023-06-19 15:26:37,773]-[INFO] -org.apache.flink.runtime.taskmanager.Task -3224 -org.apache.flink.runtime.taskmanager.Task.doRun(Task.java:623).doRun(623) | Loading JAR files for task Source: Custom Source -> Map -> Sink: Unnamed (1/1)#0 (965035c5eef2b8f28ffcfc309b92e203) [DEPLOYING].
[2023-06-19 15:26:37,788]-[INFO] -org.apache.flink.streaming.runtime.tasks.StreamTask -3239 -org.apache.flink.runtime.state.StateBackendLoader.loadFromApplicationOrConfigOrDefaultInternal(StateBackendLoader.java:257).loadFromApplicationOrConfigOrDefaultInternal(257) | No state backend has been configured, using default (HashMap) org.apache.flink.runtime.state.hashmap.HashMapStateBackend@4e1fcd2f
[2023-06-19 15:26:37,789]-[INFO] -org.apache.flink.runtime.state.StateBackendLoader -3240 -org.apache.flink.runtime.state.StateBackendLoader.fromApplicationOrConfigOrDefault(StateBackendLoader.java:315).fromApplicationOrConfigOrDefault(315) | State backend loader loads the state backend as HashMapStateBackend
[2023-06-19 15:26:37,789]-[INFO] -org.apache.flink.streaming.runtime.tasks.StreamTask -3240 -org.apache.flink.runtime.state.CheckpointStorageLoader.createJobManagerCheckpointStorage(CheckpointStorageLoader.java:274).createJobManagerCheckpointStorage(274) | Checkpoint storage is set to 'jobmanager'
[2023-06-19 15:26:37,793]-[INFO] -org.apache.flink.runtime.taskmanager.Task -3244 -org.apache.flink.runtime.taskmanager.Task.transitionState(Task.java:1080).transitionState(1080) | Source: Custom Source -> Map -> Sink: Unnamed (1/1)#0 (965035c5eef2b8f28ffcfc309b92e203) switched from DEPLOYING to INITIALIZING.
[2023-06-19 15:26:37,795]-[INFO] -org.apache.flink.runtime.executiongraph.ExecutionGraph -3246 -org.apache.flink.runtime.executiongraph.Execution.transitionState(Execution.java:1416).transitionState(1416) | Source: Custom Source -> Map -> Sink: Unnamed (1/1) (965035c5eef2b8f28ffcfc309b92e203) switched from DEPLOYING to INITIALIZING.
[2023-06-19 15:26:37,836]-[INFO] -org.apache.flink.runtime.taskmanager.Task -3287 -org.apache.flink.runtime.taskmanager.Task.transitionState(Task.java:1080).transitionState(1080) | Source: Custom Source -> Map -> Sink: Unnamed (1/1)#0 (965035c5eef2b8f28ffcfc309b92e203) switched from INITIALIZING to RUNNING.
[2023-06-19 15:26:37,837]-[INFO] -org.apache.flink.runtime.executiongraph.ExecutionGraph -3288 -org.apache.flink.runtime.executiongraph.Execution.transitionState(Execution.java:1416).transitionState(1416) | Source: Custom Source -> Map -> Sink: Unnamed (1/1) (965035c5eef2b8f28ffcfc309b92e203) switched from INITIALIZING to RUNNING.
这里的日志我截取了最后的部分,可以看到没有任何报错的,我们在看一下生成的CSV
文件
这里我们再将文件打开,看一下有没有数据
通过图片可以看到这个文件中是没有任何数据的.
这里我先说一下原因,然后再结合源码看一下,没有数据的原因是数据在内存中还没有达到4k
的缓存,没有到这个数据量就不会将数据刷新到磁盘上,代码中我们加入了睡眠时间Thread.sleep(1000)
就是为了看到这个效果,接下来我们就结合源码看一下.writeAsCsv
这个方法的缓存刷新是不是4k
,我们先看一下.writeAsCsv
的内容,点击去源码后我们先找到下面这段代码
@Deprecated
@PublicEvolving
public <X extends Tuple> DataStreamSink<T> writeAsCsv(
String path, WriteMode writeMode, String rowDelimiter, String fieldDelimiter) {
Preconditions.checkArgument(
getType().isTupleType(),
"The writeAsCsv() method can only be used on data streams of tuples.");
CsvOutputFormat<X> of = new CsvOutputFormat<>(new Path(path), rowDelimiter, fieldDelimiter);// 着重看这里,我们在看一下CsvOutputFormat里面的内容
if (writeMode != null) {
of.setWriteMode(writeMode);
}
return writeUsingOutputFormat((OutputFormat<T>) of);
}
这里我们在点击去看CsvOutputFormat
这个输出,找到如下内容
@Override
public void writeRecord(T element) throws IOException {
int numFields = element.getArity();
for (int i = 0; i < numFields; i++) {
Object v = element.getField(i);
if (v != null) {
if (i != 0) {
this.wrt.write(this.fieldDelimiter);
}
if (quoteStrings) {
if (v instanceof String || v instanceof StringValue) {
this.wrt.write('"'); // 我们要注意到wrt这个变量
this.wrt.write(v.toString());
this.wrt.write('"');
} else {
this.wrt.write(v.toString());
}
} else {
this.wrt.write(v.toString());
}
} else {
if (this.allowNullValues) {
if (i != 0) {
this.wrt.write(this.fieldDelimiter);
}
} else {
throw new RuntimeException(
"Cannot write tuple with value at position: " + i);
}
}
}
// add the record delimiter
this.wrt.write(this.recordDelimiter);
}
这里我们先看一下writeRecord(T element)
这个方法,实际上在我们调用writeAsCsv
的时候底层就是通过writeRecord
方法将数据写入csv
文件,我们看上面代码的时候要注意到this.wrt
这个变量,通过wrt
我们就可以找到,对数据刷新到磁盘定义的数据量的大小,看一下对wrt
的定义,源码内容如下
@Override
public void open(int taskNumber, int numTasks) throws IOException {
super.open(taskNumber, numTasks);
this.wrt =
this.charsetName == null
? new OutputStreamWriter(new BufferedOutputStream(this.stream, 4096)) // 看一下这里
: new OutputStreamWriter(
new BufferedOutputStream(this.stream, 4096), this.charsetName); // 还有这里
}
通过上面的源码我们可以看到BufferedOutputStream
的缓冲流定义死了为4096
,也就是4k
大小,这个参数是写死的,我们改变不了,所以在使用writeAsCsv
这个方法时,代码没有报错,并且文件中也没有数据时先不要慌,通过源码先看看具体的实现逻辑,我们就可以很快定位到问题,如果代码中我将Thread.sleep(1000)
这行代码删除掉的话CSV
文件中很快就会有数据的,代码中我使用的自定义数据源,并且每条数据其实很小,还有睡眠1
秒的限制,所以导致很久CSV
文件中都没有数据生成.
文章内容写到现在也过了很久了,数据的大小也满足4k
的条件了,我们看一下文件内容
可以看到文件中已经生成了数据,我们在看一下文件的大小
说到这里我想大家应该都理解了,虽然说了这么多关于writeAsCsv
这个方法的内容,但是不建议大家使用这个方法毕竟属于过时的方法,用起来弊端也比较大.