阿克曼公式

阿克曼公式

  • 1. 阿克曼公式
  • 2. 举例

1. 阿克曼公式

设有如下系统
{ x ˙ = A x + B u y = C x \begin{cases} \dot x = Ax + Bu \\ y = Cx \end{cases} {x˙=Ax+Buy=Cx显然,通过矩阵A能够得到其特征多项式
φ A ( λ ) = λ n + a n − 1 λ n − 1 + ⋯ + a 1 λ + a 0 \varphi _A ( \lambda ) = \lambda ^n + a_{n-1} \lambda^{n-1} + \cdots + a_1 \lambda + a_0 φA(λ)=λn+an1λn1++a1λ+a0通过将控制量设为模态反馈控制(详见模态反馈控制一文)
u = − K x u = - Kx u=Kx系统演变为
x ˙ = ( A − B K ) x \dot x = \left( A - BK \right) x x˙=(ABK)x假设期望系统的期望特征多项式
φ w ( λ ) = λ n + γ n − 1 λ n − 1 + ⋯ + γ 1 λ + γ 0 \varphi _w ( \lambda ) = \lambda ^n + \gamma_{n-1} \lambda^{n-1} + \cdots + \gamma_1 \lambda + \gamma_0 φw(λ)=λn+γn1λn1++γ1λ+γ0那么有阿克曼公式
K = [ 0 0 ⋯ 0 1 ] ⋅ [ B A B ⋯ A n − 1 B ] − 1 ⋅ φ w ( A ) (1) K = \left[ \begin{matrix} 0 & 0 & \cdots & 0 & 1 \end{matrix} \right] \cdot \left[ \begin{matrix} B & AB & \cdots & A^{n-1} B \end{matrix} \right]^{-1} \cdot \varphi _w (A) \tag{1} K=[0001][BABAn1B]1φw(A)(1)其中
φ w ( A ) = A n + γ n − 1 A n − 1 + ⋯ + γ 1 A + γ 0 I (2) \varphi _w (A) = A ^n + \gamma_{n-1} A^{n-1} + \cdots + \gamma_1 A + \gamma_0 I \tag{2} φw(A)=An+γn1An1++γ1A+γ0I(2)利用式(1)和(2),可以计算出模态反馈控制中所需的增益矩阵 K K K

2. 举例

例:设系统的柯西形式为
A = [ 0 1 − 2 − 3 ] , B = [ 0 1 ] A = \left[ \begin{matrix} 0 & 1 \\ -2 &-3 \end{matrix} \right], \quad B = \left[ \begin{matrix} 0 \\ 1 \end{matrix} \right] A=[0213],B=[01]试确定 K 1 , K 2 K_1, K_2 K1,K2,使得系统的期望特征多项式为 φ w ( s ) = s 2 + 4 s + 3 \varphi _w (s) = s^2 + 4s + 3 φw(s)=s2+4s+3

系统为2阶,即 n = 2 n=2 n=2,故可以先计算 A B AB AB A 2 A^2 A2
A B = [ 0 1 − 2 − 3 ] ⋅ [ 0 1 ] = [ 1 − 3 ] AB = \left[ \begin{matrix} 0 & 1 \\ -2 &-3 \end{matrix} \right] \cdot \left[ \begin{matrix} 0 \\ 1 \end{matrix} \right] = \left[ \begin{matrix} 1 \\ -3 \end{matrix} \right] AB=[0213][01]=[13] A 2 = [ 0 1 − 2 − 3 ] ⋅ [ 0 1 − 2 − 3 ] = [ − 2 − 3 6 7 ] A^2 = \left[ \begin{matrix} 0 & 1 \\ -2 &-3 \end{matrix} \right] \cdot \left[ \begin{matrix} 0 & 1 \\ -2 &-3 \end{matrix} \right] = \left[ \begin{matrix} -2 & -3 \\ 6 & 7 \end{matrix} \right] A2=[0213][0213]=[2637]期望的多项式为 s 2 + 4 s + 3 s^2 + 4s + 3 s2+4s+3,可以得到 γ 0 = 3 , γ 1 = 4 \gamma_0 = 3, \gamma_1 = 4 γ0=3,γ1=4。则
φ w ( A ) = A 2 + γ 1 A + γ 0 I = [ − 2 − 3 6 7 ] + 4 [ 0 1 − 2 − 3 ] + 3 [ 1 0 0 1 ] = [ 1 1 − 2 − 2 ] \begin{aligned} \varphi _w (A) &= A ^2 + \gamma_1 A + \gamma_0 I \\ &= \left[ \begin{matrix} -2 & -3 \\ 6 & 7 \end{matrix} \right] + 4 \left[ \begin{matrix} 0 & 1 \\ -2 &-3 \end{matrix} \right] + 3 \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] \\ &= \left[ \begin{matrix} 1 & 1 \\ -2 & -2 \end{matrix} \right] \end{aligned} φw(A)=A2+γ1A+γ0I=[2637]+4[0213]+3[1001]=[1212]那么,根据式(1)有
K = [ 0 1 ] ⋅ [ B A B ] − 1 ⋅ φ w ( A ) = [ 0 1 ] ⋅ [ 0 1 1 − 3 ] − 1 ⋅ [ 1 1 − 2 − 2 ] = [ 1 1 ] \begin{aligned} K &= \left[ \begin{matrix} 0 & 1 \end{matrix} \right] \cdot \left[ \begin{matrix} B & AB \end{matrix} \right]^{-1} \cdot \varphi _w (A) \\ &= \left[ \begin{matrix} 0 & 1 \end{matrix} \right] \cdot \left[ \begin{matrix} 0 & 1 \\ 1 & -3 \end{matrix} \right]^{-1} \cdot \left[ \begin{matrix} 1 & 1 \\ -2 & -2 \end{matrix} \right] \\ &= \left[ \begin{matrix} 1 & 1 \end{matrix} \right] \end{aligned} K=[01][BAB]1φw(A)=[01][0113]1[1212]=[11]即:负反馈通路中的矩阵 K K K
K = [ 1 1 ] K = \left[ \begin{matrix} 1 & 1 \end{matrix} \right] K=[11]相应的控制量为
u = − K x = − x 1 − x 2 u = -K x = -x_1 - x_2 u=Kx=x1x2

你可能感兴趣的:(算法,控制理论,线性代数,算法,矩阵)