一般地,对于一个线性定常系统,可以写成如下的柯西标准型形式
{ x ˙ ( t ) = A ( t ) x ( t ) + B ( t ) u ( t ) y ( t ) = C ( t ) x ( t ) + D ( t ) u ( t ) \begin{cases} \dot x (t) = A(t) x(t) + B(t) u(t) \\ y(t) = C(t) x(t) + D(t) u(t) \end{cases} {x˙(t)=A(t)x(t)+B(t)u(t)y(t)=C(t)x(t)+D(t)u(t)其中 x ( t ) , u ( t ) , y ( t ) x(t), u(t),y(t) x(t),u(t),y(t)分别为系统状态和、系统输入控制量和输出量,为向量。该方程组的解为
x ( t ) = e A t x 0 = ( I + A t + A 2 t 2 2 ! + ⋯ ) x 0 = Φ ( t ) x 0 (1) x(t) = e^{At} x_0 = \left( I + At + \frac{A^2 t^2} {2!} + \cdots \right) x_0 = \Phi (t) x_0 \tag{1} x(t)=eAtx0=(I+At+2!A2t2+⋯)x0=Φ(t)x0(1)其中 I I I为单位矩阵。
式(1)中的 Φ ( t ) \Phi (t) Φ(t)即为状态转移矩阵。
从式(1)可以看出,状态转移矩阵 Φ ( t ) = e A t \Phi (t)=e^{At} Φ(t)=eAt虽然具有指数形式,但由于 A A A是矩阵,因而其计算并不是简单地将 A A A中所有元素变为 e e e的指数就行的。相反,其计算需要具有式(1)的形式:
Φ ( t ) = e A t = I + A t + A 2 t 2 2 ! + A 3 t 3 3 ! + ⋯ + A i t i i ! + ⋯ (2) \Phi (t) = e^{At} = I + At + \frac{A^2 t^2} {2!} + \frac{A^3 t^3} {3!} + \cdots + \frac{A^i t^i} {i!} + \cdots \tag{2} Φ(t)=eAt=I+At+2!A2t2+3!A3t3+⋯+i!Aiti+⋯(2)以下列传递函数为例,进行状态转移矩阵的计算。
例: W ( s ) = s + 1 s 2 + 12 s + 32 W(s) = \frac{s+1}{s^2 + 12s + 32} W(s)=s2+12s+32s+1可以写出其对应的状态空间形式: A = [ − 12 − 32 1 0 ] , A = \left[ \begin{matrix} -12 & -32 \\ 1 & 0 \end{matrix} \right], A=[−121−320], B = [ 1 0 ] , B = \left[ \begin{matrix} 1 \\ 0 \end{matrix} \right], B=[10], C = [ 1 1 ] , C = \left[ \begin{matrix} 1 & 1 \end{matrix} \right], C=[11], D = 0 , D = 0, D=0,则
A 2 = [ 112 384 − 12 − 32 ] , A 3 = [ − 960 − 3584 112 384 ] , ⋯ A^2 = \left[ \begin{matrix} 112 & 384 \\ -12 & -32 \end{matrix} \right], A^3 = \left[ \begin{matrix} -960 & -3584 \\ 112 & 384 \end{matrix} \right], \quad \cdots A2=[112−12384−32],A3=[−960112−3584384],⋯代入式(2)有
Φ ( t ) = e A t = I + A t + A 2 t 2 2 ! + A 3 t 3 3 ! + ⋯ + A i t i i ! + ⋯ = [ 1 0 0 1 ] + [ − 12 − 32 1 0 ] t + 1 2 [ 112 384 − 12 − 32 ] t 2 + 1 6 [ − 960 − 3584 112 384 ] t 3 + ⋯ = [ 1 − 12 t + 56 t 2 − 160 t 3 + ⋯ − 32 t + 192 t 2 − 1792 3 t 3 + ⋯ t − 6 t 2 + 56 3 t 3 + ⋯ 1 − 16 t 2 + 64 t 3 + ⋯ ] \begin{aligned} \Phi (t) &= e^{At} = I + At + \frac{A^2 t^2} {2!} + \frac{A^3 t^3} {3!} + \cdots + \frac{A^i t^i} {i!} + \cdots \\ &= \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] + \left[ \begin{matrix} -12 & -32 \\ 1 & 0 \end{matrix} \right] t + \frac{1}{2} \left[ \begin{matrix} 112 & 384 \\ -12 & -32 \end{matrix} \right] t^2 + \frac{1}{6} \left[ \begin{matrix} -960 & -3584 \\ 112 & 384 \end{matrix} \right] t^3 + \cdots \\ &= \left[ \begin{matrix} 1-12t + 56t^2 - 160t^3 + \cdots & -32t + 192t^2 - \frac{1792}{3} t^3 + \cdots \\ t - 6t^2 + \frac{56}{3} t^3 + \cdots & 1 - 16t^2 + 64t^3 + \cdots \end{matrix} \right] \end{aligned} Φ(t)=eAt=I+At+2!A2t2+3!A3t3+⋯+i!Aiti+⋯=[1001]+[−121−320]t+21[112−12384−32]t2+61[−960112−3584384]t3+⋯=[1−12t+56t2−160t3+⋯t−6t2+356t3+⋯−32t+192t2−31792t3+⋯1−16t2+64t3+⋯]
对于离散系统
{ x ( k + 1 ) = A d ( k ) x ( k ) + B d ( k ) u ( k ) y ( k ) = C d ( k ) x ( k ) + D d ( k ) u ( k ) \begin{cases} x (k+1) = A_d(k) x(k) + B_d(k) u(k) \\ y(k) = C_d(k) x(k) + D_d(k) u(k) \end{cases} {x(k+1)=Ad(k)x(k)+Bd(k)u(k)y(k)=Cd(k)x(k)+Dd(k)u(k)其中 k k k指量化后的第 k k k时刻,即:若离散化的每个时间单位为 T 0 T_0 T0,则 x ( k + 1 ) x(k+1) x(k+1)即指在 ( k + 1 ) T 0 (k+1)T_0 (k+1)T0时刻下的状态量。
在离散化的系统下,矩阵 A d , B d , C d , D d A_d, B_d, C_d, D_d Ad,Bd,Cd,Dd与原连续系统下的 A , B , C , D A, B, C, D A,B,C,D具有如下转换关系:
A d = Φ ( T 0 ) = e A T 0 , B d = ∫ 0 T 0 Φ ( q ) B d q , C d = C , D d = D (3) A_d = \Phi \left( T_0 \right) = e^{A T_0 }, \quad B_d = \int _0 ^{T_0} \Phi (q) B dq, \quad C_d = C, \quad D_d = D \tag{3} Ad=Φ(T0)=eAT0,Bd=∫0T0Φ(q)Bdq,Cd=C,Dd=D(3)
仍以如下连续系统传递函数为例:
W ( s ) = s + 1 s 2 + 12 s + 32 W(s) = \frac{s+1}{s^2 + 12s + 32} W(s)=s2+12s+32s+1设量化时间单位为 T 0 = 0.01 s T_0 = 0.01s T0=0.01s。连续系统下的矩阵 A , B , C , D A, B, C, D A,B,C,D为 A = [ − 12 − 32 1 0 ] , B = [ 1 0 ] , C = [ 1 1 ] , D = 0 , A = \left[ \begin{matrix} -12 & -32 \\ 1 & 0 \end{matrix} \right], \quad B = \left[ \begin{matrix} 1 \\ 0 \end{matrix} \right], \quad C = \left[ \begin{matrix} 1 & 1 \end{matrix} \right], \quad D = 0, A=[−121−320],B=[10],C=[11],D=0,则 A d = Φ ( T 0 ) = e A T 0 = I + A T 0 + A 2 T 0 2 2 ! + A 3 T 0 3 3 ! + ⋯ = [ 1 0 0 1 ] + [ − 12 − 32 1 0 ] T 0 + 1 2 [ 112 384 − 12 − 32 ] T 0 2 + 1 6 [ − 960 − 3584 112 384 ] T 0 3 + ⋯ = [ 1 − 12 T 0 + 56 T 0 2 − 160 T 0 3 + ⋯ − 32 T 0 + 192 T 0 2 − 1792 2 T 0 3 + ⋯ T 0 − 6 T 0 2 + 56 3 T 0 3 + ⋯ 1 − 16 T 0 2 + 64 T 0 3 + ⋯ ] ∣ T 0 = 0.01 ≈ [ 0.8854 − 0.3014 0.0094 0.9985 ] \begin{aligned} A_d &= \Phi \left( T_0 \right) = e^{A T_0} \\ &= I + AT_0 + \frac{A^2 T_0^2}{2!} + \frac{A^3 T_0^3}{3!} + \cdots \\ &= \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] + \left[ \begin{matrix} -12 & -32 \\ 1 & 0 \end{matrix} \right] T_0 + \frac{1}{2} \left[ \begin{matrix} 112 & 384 \\ -12 & -32 \end{matrix} \right] T_0^2 + \frac{1}{6} \left[ \begin{matrix} -960 & -3584 \\ 112 & 384 \end{matrix} \right] T_0^3 + \cdots \\ &= \left[ \begin{matrix} 1-12T_0 + 56T_0^2 - 160T_0^3 + \cdots & -32T_0 + 192T_0^2 - \frac{1792}{2} T_0^3 + \cdots \\ T_0 - 6T_0^2 + \frac{56}{3} T_0^3 + \cdots & 1 - 16T_0^2 + 64T_0^3 + \cdots \end{matrix} \right] \Bigg\rvert _{T_0 = 0.01} \\ &\approx \left[ \begin{matrix} 0.8854 & -0.3014 \\ 0.0094 & 0.9985 \end{matrix} \right] \end{aligned} Ad=Φ(T0)=eAT0=I+AT0+2!A2T02+3!A3T03+⋯=[1001]+[−121−320]T0+21[112−12384−32]T02+61[−960112−3584384]T03+⋯=[1−12T0+56T02−160T03+⋯T0−6T02+356T03+⋯−32T0+192T02−21792T03+⋯1−16T02+64T03+⋯] T0=0.01≈[0.88540.0094−0.30140.9985]同时 B d = ∫ 0 T 0 Φ ( q ) B d q = ∫ 0 T 0 e A q B d q = ∫ 0 T 0 ( I + A q + A 2 q 2 2 ! + A 3 q 3 3 ! + ⋯ ) B d q = ∫ 0 T 0 B d q + ∫ 0 T 0 A B q d q + 1 2 ∫ 0 T 0 A 2 B q 2 d q + 1 6 ∫ 0 T 0 A 3 B q 3 d q + ⋯ = ∫ 0 T 0 B d q + ∫ 0 T 0 A B q d q + 1 2 ∫ 0 T 0 A 2 B q 2 d q + 1 6 ∫ 0 T 0 A 3 B q 3 d q + ⋯ = B q ∣ 0 T 0 + A B ⋅ 1 2 q 2 ∣ 0 T 0 + 1 2 A 2 B ⋅ 1 3 q 3 ∣ 0 T 0 + 1 6 A 3 B ⋅ 1 4 q 4 ∣ 0 T 0 + ⋯ = B T 0 + 1 2 A B T 0 2 + 1 6 A 2 B T 0 3 + 1 24 A 3 B T 0 4 + ⋯ (4) \begin{aligned} B_d &= \int _0 ^{T_0} \Phi (q) B dq = \int _0 ^{T_0} e^{Aq} B dq \\ &= \int _0 ^{T_0} \left( I + Aq + \frac{A^2 q^2}{2!} + \frac{A^3 q^3}{3!} + \cdots \right) B dq \\ &= \int _0 ^{T_0} B dq + \int _0 ^{T_0} AB q dq + \frac{1}{2} \int _0 ^{T_0} A^2 B q^2 dq + \frac{1}{6} \int _0 ^{T_0} A^3 B q^3 dq + \cdots \\ &= \int _0 ^{T_0} B dq + \int _0 ^{T_0} AB q dq + \frac{1}{2} \int _0 ^{T_0} A^2 B q^2 dq + \frac{1}{6} \int _0 ^{T_0} A^3 B q^3 dq + \cdots \\ &= B q \Big\rvert_0^{T_0} + AB \cdot \frac{1}{2} q^2 \bigg\rvert_0^{T_0} + \frac{1}{2} A^2B \cdot \frac{1}{3} q^3 \bigg\rvert_0^{T_0} + \frac{1}{6} A^3B \cdot \frac{1}{4} q^4 \bigg\rvert_0^{T_0} + \cdots \\ &= B T_0 + \frac{1}{2} AB T_0^2 + \frac{1}{6} A^2 B T_0^3+ \frac{1}{24} A^3 B T_0^4 + \cdots \tag{4} \end{aligned} Bd=∫0T0Φ(q)Bdq=∫0T0eAqBdq=∫0T0(I+Aq+2!A2q2+3!A3q3+⋯)Bdq=∫0T0Bdq+∫0T0ABqdq+21∫0T0A2Bq2dq+61∫0T0A3Bq3dq+⋯=∫0T0Bdq+∫0T0ABqdq+21∫0T0A2Bq2dq+61∫0T0A3Bq3dq+⋯=Bq 0T0+AB⋅21q2 0T0+21A2B⋅31q3 0T0+61A3B⋅41q4 0T0+⋯=BT0+21ABT02+61A2BT03+241A3BT04+⋯(4)下面计算 A B , A 2 B , A 3 B AB, A^2 B, A^3 B AB,A2B,A3B。由于 A = [ − 12 − 32 1 0 ] , B = [ 1 0 ] A = \left[ \begin{matrix} -12 & -32 \\ 1 & 0 \end{matrix} \right], \quad B = \left[ \begin{matrix} 1 \\ 0 \end{matrix} \right] A=[−121−320],B=[10]故 A B = [ − 12 1 ] , A 2 B = [ 112 − 12 ] , A 3 B = [ − 960 112 ] AB = \left[ \begin{matrix} -12 \\ 1 \end{matrix} \right], \quad A^2 B = \left[ \begin{matrix} 112 \\ -12 \end{matrix} \right], \quad A^3 B = \left[ \begin{matrix} -960 \\ 112 \end{matrix} \right] AB=[−121],A2B=[112−12],A3B=[−960112]则式(4)为
B d = B T 0 + 1 2 A B T 0 2 + 1 6 A 2 B T 0 3 + 1 24 A 3 B T 0 4 + ⋯ = [ 1 0 ] T 0 + 1 2 [ − 12 1 ] T 0 2 + 1 6 [ 112 − 12 ] T 0 3 + 1 24 [ − 960 112 ] T 0 4 ∣ T 0 = 0.01 = [ 0.00942 4.8047 × 1 0 − 5 ] \begin{aligned} B_d &= B T_0 + \frac{1}{2} AB T_0^2 + \frac{1}{6} A^2 B T_0^3+ \frac{1}{24} A^3 B T_0^4 + \cdots \\ &= \left[ \begin{matrix} 1 \\ 0 \end{matrix} \right] T_0 + \frac{1}{2} \left[ \begin{matrix} -12 \\ 1 \end{matrix} \right] T_0^2 + \frac{1}{6} \left[ \begin{matrix} 112 \\ -12 \end{matrix} \right] T_0^3 + \frac{1}{24} \left[ \begin{matrix} -960 \\ 112 \end{matrix} \right] T_0^4 \Bigg\rvert_{T_0 = 0.01} \\ &= \left[ \begin{matrix} 0.00942 \\ 4.8047\times 10^{-5} \end{matrix} \right] \end{aligned} Bd=BT0+21ABT02+61A2BT03+241A3BT04+⋯=[10]T0+21[−121]T02+61[112−12]T03+241[−960112]T04 T0=0.01=[0.009424.8047×10−5]进一步地, C d = C = [ 1 1 ] , D d = D = 0 C_d = C = \left[ \begin{matrix} 1 & 1 \end{matrix} \right], \quad D_d = D = 0 Cd=C=[11],Dd=D=0