MapReduce分布式计算(三)

JSON

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.

JSON和Java对象的转换

movie.txt
{"movie":"1193","rate":"5","timeStamp":"978300760","uid":"1"}
{"movie":"661","rate":"3","timeStamp":"978302109","uid":"2"}
{"movie":"1193","rate":"3","timeStamp":"978300760","uid":"3"}
{"movie":"661","rate":"1","timeStamp":"978302109","uid":"1"}
{"movie":"1193","rate":"2","timeStamp":"978300760","uid":"2"}
{"movie":"661","rate":"4","timeStamp":"978302109","uid":"3"}
{"movie":"1193","rate":"5","timeStamp":"978300760","uid":"3"}
{"movie":"661","rate":"1","timeStamp":"978302109","uid":"1"}
{"movie":"1193","rate":"3","timeStamp":"978300760","uid":"2"}
{"movie":"661","rate":"4","timeStamp":"978302109","uid":"1"}
{"movie":"1193","rate":"5","timeStamp":"978300760","uid":"3"}
{"movie":"661","rate":"1","timeStamp":"978302109","uid":"1"}
{"movie":"1193","rate":"2","timeStamp":"978300760","uid":"2"}
{"movie":"661","rate":"4","timeStamp":"978302109","uid":"5"}
对应的javabean类
public class MovieBean {
    private String movie ;
    private double rate;
    private long timeStamp;
    private String uid;
 }
pom.xml 添加解析工具
   //fastjson  阿里的
   
            com.alibaba
            fastjson
            1.2.79
   
   
   //gson  谷歌的
    
            com.google.code.gson
            gson
            2.8.9
        

代码实现

public class Test {
    public static void main(String[] args) throws IOException {
        //获取resources下的文件路径
        String path = Test.class.getClassLoader().getResource("movie.txt").getPath();

        BufferedReader br = new BufferedReader(new FileReader(path));

        String line = null;
        while((line = br.readLine())!=null){
             //{"movie":"1193","rate":"5","timeStamp":"978300760","uid":"1"}
            //使用fastjson  将JSON字符串 封装到对象中
//            MovieBean movieBean = JSON.parseObject(line, MovieBean.class);
//            System.out.println(movieBean);
            //使用fastjson 将对象转换为字符串
//            String s = JSON.toJSONString(movieBean);
//            System.out.println(s);

            //使用gson工具
//            Gson gson = new Gson();
//            //将JSON字符串封装到对象中
//            MovieBean mb = gson.fromJson(line, MovieBean.class);
            System.out.println(mb);
//            //将对象转换为JSON字符串
//            String s = gson.toJson(mb);
//            System.out.println(s);
        }
    }
}

电影信息均分

平均分

// 求每部电影的平均分
import com.google.gson.Gson;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;


import java.io.IOException;

public class MovieAvgRate{

    /*
         K1: 起始位置
         V1: 一行数据
         K2:电影名称
         V2:分数
     */
    private static class MovieMapper extends Mapper{
        Gson gs = new Gson();
        Text k2 = new Text();
        DoubleWritable v2 = new DoubleWritable();

        @Override
        protected void map(LongWritable key, Text value,Context context)   {

            try{
                //将每行数据转换为对象
                MovieBean movieBean = gs.fromJson(value.toString(), MovieBean.class);

                String movie = movieBean.getMovie();
                double rate = movieBean.getRate();

                k2.set(movie);
                v2.set(rate);

                context.write(k2,v2);
            }catch (Exception e){
                System.out.println("出错行为:"+value.toString());
            }

        }
    }

    private static class MovieReduce extends Reducer{

        DoubleWritable v3= new DoubleWritable();
        @Override
        protected void reduce(Text key, Iterable values,Context context) throws IOException, InterruptedException {

            double sum = 0;
            int count = 0;
            for (DoubleWritable value : values) {
                sum+=value.get();

                count++;
            }

            v3.set(sum/count);
            context.write(key,v3);
        }
    }

    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        Configuration conf = new Configuration();

        //创建任务
        Job job = Job.getInstance(conf, "movie");
        //设置Mapper类
        job.setMapperClass(MovieMapper.class);
        //设置Reduce类
        job.setReducerClass(MovieReduce.class);
        //设置map的输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(DoubleWritable.class);
        //设置reduce的输出类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(DoubleWritable.class);

        //设置输入文件位置
        FileInputFormat.setInputPaths(job,new Path("d:\\work\\abc\\movie.txt"));
        //设置输出文件位置
        FileOutputFormat.setOutputPath(job,new Path("d:\\work\\abc\\out_put3"));

        //将任务提交 并等待完成
        job.waitForCompletion(true);
    }

}

评论人数和均分

那么MovieBean需要实现hadoop序列化

import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class MovieBean implements Writable {
    private String movie ;
    private double rate;
    private long timeStamp;
    private String uid;
  
    // get/set
   @Override
    public void write(DataOutput dataOutput) throws IOException {
        dataOutput.writeUTF(movie);
        dataOutput.writeDouble(rate);
        dataOutput.writeLong(timeStamp);
        dataOutput.writeUTF(uid);
    }

    @Override
    public void readFields(DataInput dataInput) throws IOException {
         movie = dataInput.readUTF();
        rate = dataInput.readDouble();
        timeStamp = dataInput.readLong();
        uid = dataInput.readUTF();
    }
}

import com.google.gson.Gson;
import com.google.gson.JsonSyntaxException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;
import java.util.HashSet;
import java.util.Set;

public class Movie {

    private static class MovieMapper extends Mapper{

        Gson gs = new Gson();
        Text k2 = new Text();
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

            try {
                MovieBean movieBean = gs.fromJson(value.toString(), MovieBean.class);
//                System.out.println(movieBean);
                String movie = movieBean.getMovie();

                k2.set(movie);
                context.write(k2,movieBean);
            } catch (Exception e) {
                e.printStackTrace();
//                System.out.println("出错行:"+value.toString());
            }

        }
    }

    private static class MovieReducer extends Reducer{


        Text v3 = new Text();
        @Override
        protected void reduce(Text key, Iterable values,Context context) throws IOException, InterruptedException {

            //总分
            double countRate = 0.0;
            //总次数
            int count = 0;
            //定义集合 存储评论的人数 去掉重复
            Set set = new HashSet<>();
            for (MovieBean mb : values) {

                System.out.println(mb);
               countRate+= mb.getRate();
                System.out.println(mb.getRate());
               count++;
                // 1 2 1 2 3 2  一个人可以对电影进行多次评论 添加到set集合中去重 集合的长度就是总人数
               set.add(mb.getUid());
            }

            v3.set("平均分:"+countRate/count+"总人数:"+set.size());
            context.write(key,v3);
        }
    }

    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        Configuration conf = new Configuration();

        //创建任务
        Job job = Job.getInstance(conf, "movie2");
        //设置Mapper类
        job.setMapperClass(Movie.MovieMapper.class);
        //设置Reduce类
        job.setReducerClass(Movie.MovieReducer.class);
        //设置map的输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(MovieBean.class);

        //设置reduce的输出类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        //设置输入文件位置
        FileInputFormat.setInputPaths(job,new Path("d:\\work\\abc\\movie.txt"));
        //设置输出文件位置
        FileOutputFormat.setOutputPath(job,new Path("d:\\work\\abc\\out_put4"));

        //将任务提交 并等待完成
        job.waitForCompletion(true);
    }

}

按照每个用户的评分从高到低显示

package com.doit.demo08;

import com.doit.demo05.MovieBean;
import com.google.gson.Gson;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;
import java.util.*;

public class Movie {

    private static class MovieMapper extends Mapper{

        Gson gs = new Gson();
        Text k2 = new Text();
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

            try {
                MovieBean movieBean = gs.fromJson(value.toString(), MovieBean.class);
//                System.out.println(movieBean);
                String uid = movieBean.getUid();

                k2.set(uid);
                context.write(k2,movieBean);
            } catch (Exception e) {
                e.printStackTrace();
//                System.out.println("出错行:"+value.toString());
            }

        }
    }

    private static class MovieReducer extends Reducer{


        Text v3 = new Text();

        @Override
        protected void reduce(Text key, Iterable values,Context context) throws IOException, InterruptedException {

            ArrayList list = new ArrayList<>();

            for (MovieBean value : values) {

                MovieBean mb = new MovieBean();
                mb.setUid(value.getUid());
                mb.setMovie(value.getMovie());
                mb.setRate(value.getRate());
                mb.setTimeStamp(value.getTimeStamp());

                list.add(mb);
            }

            Collections.sort(list, new Comparator() {
                @Override
                public int compare(MovieBean o1, MovieBean o2) {
                    return  Double.compare(o2.getRate(),o1.getRate());
                }
            });

            for (MovieBean movieBean : list) {
                Gson gs = new Gson();
                v3.set(gs.toJson(movieBean));
                context.write(NullWritable.get(),v3);
            }

        }
    }

    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        Configuration conf = new Configuration();

        //创建任务
        Job job = Job.getInstance(conf, "movie2");
        //设置Mapper类
        job.setMapperClass(MovieMapper.class);
        //设置Reduce类
        job.setReducerClass(MovieReducer.class);
        //设置map的输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(MovieBean.class);

        //设置reduce的输出类型
        job.setOutputKeyClass(NullWritable.class);
        job.setOutputValueClass(Text.class);

        //设置输入文件位置
        FileInputFormat.setInputPaths(job,new Path("d:\\work\\abc\\movie.txt"));
        //设置输出文件位置
        FileOutputFormat.setOutputPath(job,new Path("d:\\work\\abc\\out_put7"));

        //将任务提交 并等待完成
        job.waitForCompletion(true);
    }

}

你可能感兴趣的:(mapreduce,java,前端)