[笔记]hadoop tutorial - Reducer

引用
Reducer reduces a set of intermediate values which share a key to a smaller set of values.

Reducer的数量
可通过以下方法设置
JobConf.setNumReduceTasks(int);

可以修改mapred.reduce.tasks参数,默认值为1。
官网推荐计算方法
  • 0.95 * NUMBER_OF_NODES * mapred.tasktracker.reduce.tasks.maximum
  • 1.75 * NUMBER_OF_NODES * mapred.tasktracker.reduce.tasks.maximum

其中选择0.95时,所有的reducer task都会在map task结束时立即启动;选择1.75时有部分reducer task需要等到第二轮执行(从先结束的节点开始执行),这样可以更好的做到负载均衡。
引用
It is legal to set the number of reduce-tasks to zero if no reduction is desired.
In this case the outputs of the map-tasks go directly to the FileSystem, into the output path set by setOutputPath(Path). The framework does not sort the map-outputs before writing them out to the FileSystem.

Reducer阶段的工作
引用
Reducer has 3 primary phases: shuffle, sort and reduce.
  • Shuffle
  • Input to the Reducer is the sorted output of the mappers. In this phase the framework fetches the relevant partition of the output of all the mappers, via HTTP.
  • Sort
  • The framework groups Reducer inputs by keys (since different mappers may have output the same key) in this stage.
    The shuffle and sort phases occur simultaneously; while map-outputs are being fetched they are merged.
  • Secondary Sort
  • If equivalence rules for grouping the intermediate keys are required to be different from those for grouping keys before reduction, then one may specify a Comparator via JobConf.setOutputValueGroupingComparator(Class). Since JobConf.setOutputKeyComparatorClass(Class) can be used to control how intermediate keys are grouped, these can be used in conjunction to simulate secondary sort on values.
    辅助排序可用于values需要排序的场合,如果将key对应的所有values直接在内存中排序可能会造成OOM问题,通过辅助排序将key和value封装成复合key,JobConf.setOutputKeyComparatorClass(Class)控制排序;JobConf.setOutputValueGroupingComparator(Class)控制分组;同时需要自定义Partitioner,将每个group下的数据分到同一个reducer中,而每个group会形成一个part文件,在key很多的场景下可能会需要文件的拼接。(我的理解一般key对应的value比较少的场景直接在reducer中排序,如果key对应的value非常多,需要使用辅助排序。)
  • Reduce
  • In this phase the reduce(WritableComparable, Iterator, OutputCollector, Reporter) method is called for each <key, (list of values)> pair in the grouped inputs.

    你可能感兴趣的:(hadoop)