项目设计集合(人工智能方向):助力新人快速实战掌握技能、自主完成项目设计升级,提升自身的硬实力(不仅限NLP、知识图谱、计算机视觉等领域):汇总有意义的项目设计集合,助力新人快速实战掌握技能,助力用户更好利用 CSDN 平台,自主完成项目设计升级,提升自身的硬实力。
专栏订阅:项目大全提升自身的硬实力
[专栏详细介绍:项目设计集合(人工智能方向):助力新人快速实战掌握技能、自主完成项目设计升级,提升自身的硬实力(不仅限NLP、知识图谱、计算机视觉等领域)
{
"introduction_by_movie": [
"nm简介",
"nm剧情简介",
"nm的内容是什么",
"nm讲了什么",
"nm讲了什么故事",
"nm演了什么",
"nm的故事梗概是什么",
"nm的剧情简介是什么",
"nm的内容简介是什么",
"nm的剧情介绍是什么",
"nm的情节是什么",
"nm的主要情节是什么"
],
"rating_by_movie": [
"nm的评分是多少",
"nm得了多少分",
"nm的评分有多少",
"nm的评分",
"nm得分是多少",
"nm的分数是",
"nm电影分数是多少",
"nm电影评分",
"nm评分",
"nm的分数是多少",
"nm这部电影的评分是多少"
],
"release_date_by_movie": [
"nm上映时间",
"nm定档时间",
"nm的上映时间是什么时候",
"nm的首映时间是什么时候",
"nm什么时候上映",
"nm什么时候首映",
"最早什么时候能看到nm",
"nm什么时候在影院上线",
"什么时候可以在影院看到nm",
"nm什么时候在影院放映",
"nm什么时候首播"
],
Forrest Gump nm
Kill Bill: Vol. 1 nm
英雄 nm
Miami Vice nm
Indiana Jones and the Temple of Doom nm
卧虎藏龙 nm
Pirates of the Caribbean: At World's End nm
Kill Bill: Vol. 2 nm
The Matrix Reloaded nm
The Matrix Revolutions nm
Harry Potter and the Chamber of Secrets nm
Harry Potter and the Prisoner of Azkaban nm
Harry Potter and the Goblet of Fire nm
Harry Potter and the Order of the Phoenix nm
The Last Emperor nm
Harry Potter and the Half-Blood Prince nm
花样年华 nm
2046 nm
Lethal Weapon 4 nm
Hannibal Rising nm
TMNT nm
무사 nm
Anna and the King nm
满城尽带黄金甲 nm
jieba
neo4j
python-dotenv
scikit-learn
flask
flask-cors
gunicorn
import os
from neo4j import GraphDatabase
class Database:
"""
Neo4j 数据库访问层。
管理数据库连接的生命周期,并提供查询接口。
"""
def __init__(self):
uri = os.environ["DATABASE_URI"]
user = os.environ["DATABASE_USER"]
password = os.environ["DATABASE_PASSWORD"]
try:
self._driver = GraphDatabase.driver(uri, auth=(user, password))
self._session = self._driver.session()
except Exception as e:
raise Exception("数据库连接失败") from e
def close(self):
try:
self._session.close()
self._driver.close()
except Exception as e:
raise Exception("数据库断开失败") from e
def find_one(self, query: str, **parameters):
result = self._session.run(query, parameters).single()
return result.value() if result else None
def find_many(self, query: str, **parameters):
return self._session.run(query, parameters).value()
if __name__ == "__main__":
import dotenv
dotenv.load_dotenv()
database = Database()
genres = database.find_many(
"""
MATCH (m:Movie)-[BELONGS_TO]->(g:Genre)
WHERE m.name = $movie_name
RETURN g.name
""",
movie_name="卧虎藏龙",
)
database.close()
print(genres)
import json
import os
import jieba
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
TRAIN_DATASET_PATH = os.path.join("data", "train.json")
jieba.setLogLevel("ERROR")
def normalize(sentence: str):
return " ".join(jieba.cut(sentence))
class BaseClassifier:
"""
底层分类器。
使用 TF-IDF 向量化文本,然后使用朴素贝叶斯预测标签。
"""
def __init__(self):
self._vectorizer = TfidfVectorizer()
self._classifier = MultinomialNB(alpha=0.01)
def _train(self, x: list, y: list):
X = self._vectorizer.fit_transform(x).toarray()
self._classifier.fit(X, y)
def _predict(self, x: list):
X = self._vectorizer.transform(x).toarray()
return self._classifier.predict(X)
class Classifier(BaseClassifier):
"""
问题分类器。
根据问题中出现的关键词,将问题归于某一已知类别下。
"""
def __init__(self):
BaseClassifier.__init__(self)
questions, labels = Classifier._read_train_dataset()
self._train(questions, labels)
def classify(self, sentence: str):
question = normalize(sentence)
return self._predict([question])[0]
@staticmethod
def _read_train_dataset():
with open(TRAIN_DATASET_PATH, "r", encoding="utf-8") as fr:
train_dataset: dict[str, list[str]] = json.load(fr)
questions = []
labels = []
for label, sentences in train_dataset.items():
questions.extend([normalize(sentence) for sentence in sentences])
labels.extend([label for _ in sentences])
return questions, labels
if __name__ == "__main__":
classifier = Classifier()
while True:
sentence = input("请输入问题:").strip()
label = classifier.classify(sentence)
print(f"问题分类:{label}")
在 backend
目录下添加环境变量文件 .env
。
# Neo4j 数据库地址
DATABASE_URI=
# Neo4j 用户名
DATABASE_USER=
# Neo4j 密码
DATABASE_PASSWORD=
启动后端服务。
cd backend
gunicorn app:app
在 frontend
目录下添加环境变量文件 .env
。
# 后端服务地址
VITE_API_BASE_URL=
启动前端服务。
cd frontend
npm build
npm preview
Neo4j
Python
Scikit-learn
Jieba
Python
Flask
Render
TypeScript
Preact
Tailwind CSS
pnpm
Vite
ESLint
Prettier
https://download.csdn.net/download/sinat_39620217/87990788