目录
一、异常捕获
二、迭代器
三、拆包、聚合、映射
四、filter() 函数
五、匿名函数
六、闭包
七、装饰器
异常捕获可增强程序的健壮性,即程序在遇到遇到异常的时候并不会做中断处理,而是会将异常抛出,由程序员来分析异常和做异常处理。
a = 1
b = '2'
try:
print('运算开始') # 执行
print(a + b)
except Exception as e:
print('运行报错') # 执行
print(e)
else:
print('未出现异常') # 未执行
finally:
print('运行完毕') # 执行
迭代器通常用于数据结构对象的遍历,可以通过for循环控制或者next()函数控制,next()函数中可以添加防报错提示,防止next()越界访问。
# 1 2 3 4 这四个数字可以组成多少个各个位数不同的数字
count = 0
_list = [1, 2, 3, 4]
for i in _list:
for j in _list:
for k in _list:
for l in _list:
# 利用集合的特性
if len({i, j, k, l}) == 4:
sum = i * 1000 + j * 100 + k * 10 + l
print(sum, end=' ')
count += 1
print(f'\ncount = {count}')
x = 'python'
y = iter(x)
print(y) #
print(next(y, '已经迭代结束了')) # p, 在next函数中的字符串,便是防报错提示
print(next(y, '已经迭代结束了')) # y
print(next(y, '已经迭代结束了')) # t
print(next(y, '已经迭代结束了')) # h
print(next(y, '已经迭代结束了')) # o
print(next(y, '已经迭代结束了')) # n
print(next(y, '已经迭代结束了')) # 已经迭代结束了
print(next(y, '已经迭代结束了')) # 已经迭代结束了
print(next(y, '已经迭代结束了')) # 已经迭代结束了
# 拆包
i, j, k, l = [1, 2, 3, 4]
print(i, end=" ")
print(j, end=" ")
print(k, end=" ")
print(l) # 1 2 3 4
# 聚合, 短板效应
x = [1, 2]
y = [1, 2, 3]
z = ['hello', 'world', '!']
print(zip(x, y, z)) #
for e in zip(x, y, z):
print(e, end=" ") # (1, 1, 'hello') (2, 2, 'world') 32 9 100
print()
# 映射,短板效应
x = [2, 3, 10, 2]
y = [5, 2, 2]
a = map(pow, x, y) # pow()幂函数,pow(2, 5), pow(3, 2), pow(10, 2)
print(a) #
filter() 函数:从数据结构对象obj中筛选出符合某个函数func()条件的数据
filter() 函数会根据所提供的func()函数对可迭代对象obj的每个元素进行遍历,将遍历时的运算结果为真的元素,以迭代器的形式返回
def Even(n):
return n % 2 == 0
a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
b = list(filter(Even, a))
print(b) # [2, 4, 6, 8, 10]
在Python语言中除了def语句用来定义函数之外,还可以使用匿名函数 lambda,它是Python一种生成函数对象的表达式形式。
func = lambda x, y : x + y
print(func(2, 5)) # 7
func = lambda x : x if x % 2 == 0 else None
print(func(4)) # 4
print(func(5)) # None
闭包函数的必要条件:
def func():
name = 'python'
def inner():
print('hello world')
return name
return inner
f = func()
f() # hello world
print(f())
# hello world
# python
用闭包实现日志记录程序
import logging
def log_header(logger_name):
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s [%(name)s] %(levelname)s %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
logger = logging.getLogger(logger_name)
def _logging(something, level):
if level == 'debug':
logger.debug(something)
elif level == 'warning':
logger.warning(something)
elif level == 'error':
logger.error(something)
else:
raise Exception("I dont know what you want to do?" )
return _logging
project_1_logging = log_header('project_1')
project_2_logging = log_header('project_2')
def project_1():
#do something
project_1_logging('this is a debug info', 'debug')
#do something
project_1_logging('this is a warning info', 'warning')
# do something
project_1_logging('this is a error info', 'error')
def project_2():
# do something
project_2_logging('this is a debug info', 'debug')
# do something
project_2_logging('this is a warning info', 'warning')
# do something
project_2_logging('this is a critical info', 'error')
project_1()
project_2()
#输出
2018-05-26 22:56:23 [project_1] DEBUG this is a debug info
2018-05-26 22:56:23 [project_1] WARNING this is a warning info
2018-05-26 22:56:23 [project_1] ERROR this is a error info
2018-05-26 22:56:23 [project_2] DEBUG this is a debug info
2018-05-26 22:56:23 [project_2] WARNING this is a warning info
2018-05-26 22:56:23 [project_2] ERROR this is a critical info
闭包:本质也是函数,参数和返回值都是函数,对函数进行增强
语法糖:没有增强新功能,对语言没有影响,更方便程序员使用
import time
def CountTimeWrapper(func):
# 闭包
def ImproveFunc(*args, **kwargs): # 增强函数应该把接收到的参数传给原函数
start_time = time.perf_counter()
ret = func(*args, **kwargs) # 传入参数并记录返回值
end_time = time.perf_counter()
print(f'函数的执行时间为{end_time - start_time}')
return ret
return ImproveFunc
@CountTimeWrapper # @闭包函数名,就是装饰器,自增强一次
def PrintOdds(lim=100):
cnt = 0
for i in range(lim):
if i % 2 == 0:
cnt += 1
return cnt
if __name__ == '__main__':
# PrintOdds = CountTimeWrapper(PrintOdds)
# 装饰器等价于在第一次调用时执行上面语句
print(PrintOdds()) # 打印程序运行时间和计算结果