Spark SQL 6-7

6. Spark SQL实战

6.1 数据说明

数据集是货品交易数据集。

Spark SQL 6-7_第1张图片

 

 

 每个订单可能包含多个货品,每个订单可以产生多次交易,不同的货品有不同的单价。

6.2 加载数据

tbStock:

scala> case class tbStock(ordernumber:String,locationid:String,dateid:String) extends Serializable

defined class tbStock

scala> val tbStockRdd = spark.sparkContext.textFile("tbStock.txt")

tbStockRdd: org.apache.spark.rdd.RDD[String] = tbStock.txt MapPartitionsRDD[1] at textFile at <console>:23

scala> val tbStockDS = tbStockRdd.map(_.split(",")).map(attr=>tbStock(attr(0),attr(1),attr(2))).toDS

tbStockDS: org.apache.spark.sql.Dataset[tbStock] = [ordernumber: string, locationid: string ... 1 more field]

scala> tbStockDS.show()

+------------+----------+---------+

| ordernumber|locationid|   dataid|

+------------+----------+---------+

|BYSL00000893|      ZHAO|2007-8-23|

|BYSL00000897|      ZHAO|2007-8-24|

|BYSL00000898|      ZHAO|2007-8-25|

|BYSL00000899|      ZHAO|2007-8-26|

|BYSL00000900|      ZHAO|2007-8-26|

|BYSL00000901|      ZHAO|2007-8-27|

|BYSL00000902|      ZHAO|2007-8-27|

|BYSL00000904|      ZHAO|2007-8-28|

|BYSL00000905|      ZHAO|2007-8-28|

|BYSL00000906|      ZHAO|2007-8-28|

|BYSL00000907|      ZHAO|2007-8-29|

|BYSL00000908|      ZHAO|2007-8-30|

|BYSL00000909|      ZHAO| 2007-9-1|

|BYSL00000910|      ZHAO| 2007-9-1|

|BYSL00000911|      ZHAO|2007-8-31|

|BYSL00000912|      ZHAO| 2007-9-2|

|BYSL00000913|      ZHAO| 2007-9-3|

|BYSL00000914|      ZHAO| 2007-9-3|

|BYSL00000915|      ZHAO| 2007-9-4|

|BYSL00000916|      ZHAO| 2007-9-4|

+------------+----------+---------+

only showing top 20 rows

tbStockDetail:

scala> case class tbStockDetail(ordernumber:String, rownum:Int, itemid:String, number:Int, price:Double, amount:Double) extends Serializable

defined class tbStockDetail

scala> val tbStockDetailRdd = spark.sparkContext.textFile("tbStockDetail.txt")

tbStockDetailRdd: org.apache.spark.rdd.RDD[String] = tbStockDetail.txt MapPartitionsRDD[13] at textFile at <console>:23

scala> val tbStockDetailDS = tbStockDetailRdd.map(_.split(",")).map(attr=> tbStockDetail(attr(0),attr(1).trim().toInt,attr(2),attr(3).trim().toInt,attr(4).trim().toDouble, attr(5).trim().toDouble)).toDS

tbStockDetailDS: org.apache.spark.sql.Dataset[tbStockDetail] = [ordernumber: string, rownum: int ... 4 more fields]

scala> tbStockDetailDS.show()

+------------+------+--------------+------+-----+------+

| ordernumber|rownum|        itemid|number|price|amount|

+------------+------+--------------+------+-----+------+

|BYSL00000893|     0|FS527258160501|    -1|268.0|-268.0|

|BYSL00000893|     1|FS527258169701|     1|268.0| 268.0|

|BYSL00000893|     2|FS527230163001|     1|198.0| 198.0|

|BYSL00000893|     3|24627209125406|     1|298.0| 298.0|

|BYSL00000893|     4|K9527220210202|     1|120.0| 120.0|

|BYSL00000893|     5|01527291670102|     1|268.0| 268.0|

|BYSL00000893|     6|QY527271800242|     1|158.0| 158.0|

|BYSL00000893|     7|ST040000010000|     8|  0.0|   0.0|

|BYSL00000897|     0|04527200711305|     1|198.0| 198.0|

|BYSL00000897|     1|MY627234650201|     1|120.0| 120.0|

|BYSL00000897|     2|01227111791001|     1|249.0| 249.0|

|BYSL00000897|     3|MY627234610402|     1|120.0| 120.0|

|BYSL00000897|     4|01527282681202|     1|268.0| 268.0|

|BYSL00000897|     5|84126182820102|     1|158.0| 158.0|

|BYSL00000897|     6|K9127105010402|     1|239.0| 239.0|

|BYSL00000897|     7|QY127175210405|     1|199.0| 199.0|

|BYSL00000897|     8|24127151630206|     1|299.0| 299.0|

|BYSL00000897|     9|G1126101350002|     1|158.0| 158.0|

|BYSL00000897|    10|FS527258160501|     1|198.0| 198.0|

|BYSL00000897|    11|ST040000010000|    13|  0.0|   0.0|

+------------+------+--------------+------+-----+------+

only showing top 20 rows

tbDate:

scala> case class tbDate(dateid:String, years:Int, theyear:Int, month:Int, day:Int, weekday:Int, week:Int, quarter:Int, period:Int, halfmonth:Int) extends Serializable

defined class tbDate

scala> val tbDateRdd = spark.sparkContext.textFile("tbDate.txt")

tbDateRdd: org.apache.spark.rdd.RDD[String] = tbDate.txt MapPartitionsRDD[20] at textFile at <console>:23

scala> val tbDateDS = tbDateRdd.map(_.split(",")).map(attr=> tbDate(attr(0),attr(1).trim().toInt, attr(2).trim().toInt,attr(3).trim().toInt, attr(4).trim().toInt, attr(5).trim().toInt, attr(6).trim().toInt, attr(7).trim().toInt, attr(8).trim().toInt, attr(9).trim().toInt)).toDS

tbDateDS: org.apache.spark.sql.Dataset[tbDate] = [dateid: string, years: int ... 8 more fields]

scala> tbDateDS.show()

+---------+------+-------+-----+---+-------+----+-------+------+---------+

|   dateid| years|theyear|month|day|weekday|week|quarter|period|halfmonth|

+---------+------+-------+-----+---+-------+----+-------+------+---------+

| 2003-1-1|200301|   2003|    1|  1|      3|   1|      1|     1|        1|

| 2003-1-2|200301|   2003|    1|  2|      4|   1|      1|     1|        1|

| 2003-1-3|200301|   2003|    1|  3|      5|   1|      1|     1|        1|

| 2003-1-4|200301|   2003|    1|  4|      6|   1|      1|     1|        1|

| 2003-1-5|200301|   2003|    1|  5|      7|   1|      1|     1|        1|

| 2003-1-6|200301|   2003|    1|  6|      1|   2|      1|     1|        1|

| 2003-1-7|200301|   2003|    1|  7|      2|   2|      1|     1|        1|

| 2003-1-8|200301|   2003|    1|  8|      3|   2|      1|     1|        1|

| 2003-1-9|200301|   2003|    1|  9|      4|   2|      1|     1|        1|

|2003-1-10|200301|   2003|    1| 10|      5|   2|      1|     1|        1|

|2003-1-11|200301|   2003|    1| 11|      6|   2|      1|     2|        1|

|2003-1-12|200301|   2003|    1| 12|      7|   2|      1|     2|        1|

|2003-1-13|200301|   2003|    1| 13|      1|   3|      1|     2|        1|

|2003-1-14|200301|   2003|    1| 14|      2|   3|      1|     2|        1|

|2003-1-15|200301|   2003|    1| 15|      3|   3|      1|     2|        1|

|2003-1-16|200301|   2003|    1| 16|      4|   3|      1|     2|        2|

|2003-1-17|200301|   2003|    1| 17|      5|   3|      1|     2|        2|

|2003-1-18|200301|   2003|    1| 18|      6|   3|      1|     2|        2|

|2003-1-19|200301|   2003|    1| 19|      7|   3|      1|     2|        2|

|2003-1-20|200301|   2003|    1| 20|      1|   4|      1|     2|        2|

+---------+------+-------+-----+---+-------+----+-------+------+---------+

only showing top 20 rows

注册表:

scala> tbStockDS.createOrReplaceTempView("tbStock")

scala> tbDateDS.createOrReplaceTempView("tbDate")

scala> tbStockDetailDS.createOrReplaceTempView("tbStockDetail")

6.3 计算所有数据中每年的销售单数、销售总额

统计所有订单中每年的销售单数、销售总额

三个表连接后以count(distinct a.ordernumber)计销售单数,sum(b.amount)计销售总额

Spark SQL 6-7_第2张图片

 

 

SELECT c.theyear, COUNT(DISTINCT a.ordernumber), SUM(b.amount)

FROM tbStock a

JOIN tbStockDetail b ON a.ordernumber = b.ordernumber

JOIN tbDate c ON a.dateid = c.dateid

GROUP BY c.theyear

ORDER BY c.theyear

 

spark.sql("SELECT c.theyear, COUNT(DISTINCT a.ordernumber), SUM(b.amount) FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber JOIN tbDate c ON a.dateid = c.dateid GROUP BY c.theyear ORDER BY c.theyear").show

 

结果如下:

+-------+---------------------------+--------------------+                      

|theyear|count(DISTINCT ordernumber)|         sum(amount)|

+-------+---------------------------+--------------------+

|   2004|                       1094|   3268115.499199999|

|   2005|                       3828|1.3257564149999991E7|

|   2006|                       3772|1.3680982900000006E7|

|   2007|                       4885|1.6719354559999993E7|

|   2008|                       4861| 1.467429530000001E7|

|   2009|                       2619|   6323697.189999999|

|   2010|                         94|  210949.65999999997|

+-------+---------------------------+--------------------+

 

6.4 查询每年最大金额的订单及其金额

目标:统计每年最大金额订单的销售额:

 

1. 统计每年,每个订单一共有多少销售额

SELECT a.dateid, a.ordernumber, SUM(b.amount) AS SumOfAmount

FROM tbStock a

JOIN tbStockDetail b ON a.ordernumber = b.ordernumber

GROUP BY a.dateid, a.ordernumber

 

spark.sql("SELECT a.dateid, a.ordernumber, SUM(b.amount) AS SumOfAmount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber GROUP BY a.dateid, a.ordernumber").show

2. 结果如下:

+----------+------------+------------------+

|    dateid| ordernumber|       SumOfAmount|

+----------+------------+------------------+

|  2008-4-9|BYSL00001175|             350.0|

| 2008-5-12|BYSL00001214|             592.0|

| 2008-7-29|BYSL00011545|            2064.0|

|  2008-9-5|DGSL00012056|            1782.0|

| 2008-12-1|DGSL00013189|             318.0|

|2008-12-18|DGSL00013374|             963.0|

|  2009-8-9|DGSL00015223|            4655.0|

| 2009-10-5|DGSL00015585|            3445.0|

| 2010-1-14|DGSL00016374|            2934.0|

| 2006-9-24|GCSL00000673|3556.1000000000004|

| 2007-1-26|GCSL00000826| 9375.199999999999|

| 2007-5-24|GCSL00001020| 6171.300000000002|

|  2008-1-8|GCSL00001217|            7601.6|

| 2008-9-16|GCSL00012204|            2018.0|

| 2006-7-27|GHSL00000603|            2835.6|

|2006-11-15|GHSL00000741|           3951.94|

|  2007-6-6|GHSL00001149|               0.0|

| 2008-4-18|GHSL00001631|              12.0|

| 2008-7-15|GHSL00011367|             578.0|

|  2009-5-8|GHSL00014637|            1797.6|

+----------+------------+------------------+

 

3.以上一步查询结果为基础表,和表tbDate使用dateid join,求出每年最大金额订单的销售额

SELECT theyear, MAX(c.SumOfAmount) AS SumOfAmount

FROM (SELECT a.dateid, a.ordernumber, SUM(b.amount) AS SumOfAmount

FROM tbStock a

JOIN tbStockDetail b ON a.ordernumber = b.ordernumber

GROUP BY a.dateid, a.ordernumber

) c

JOIN tbDate d ON c.dateid = d.dateid

GROUP BY theyear

ORDER BY theyear DESC

 

spark.sql("SELECT theyear, MAX(c.SumOfAmount) AS SumOfAmount FROM (SELECT a.dateid, a.ordernumber, SUM(b.amount) AS SumOfAmount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber GROUP BY a.dateid, a.ordernumber ) c JOIN tbDate d ON c.dateid = d.dateid GROUP BY theyear ORDER BY theyear DESC").show

4. 结果如下:

+-------+------------------+                                                    

|theyear|       SumOfAmount|

+-------+------------------+

|   2010|13065.280000000002|

|   2009|25813.200000000008|

|   2008|           55828.0|

|   2007|          159126.0|

|   2006|           36124.0|

|   2005|38186.399999999994|

|   2004| 23656.79999999997|

+-------+------------------+

 

6.5 计算每年最畅销货品

目标1:统计每年最畅销货品(哪个货品销售额amount在当年最高,哪个就是最畅销货品)

目标2:统计每年最畅销货品(哪个货品销售数量当年最高,哪个就是最畅销货品)

Spark SQL 6-7_第3张图片

 

 

第一步、求出每年每个货品的销售额

SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmount

FROM tbStock a

JOIN tbStockDetail b ON a.ordernumber = b.ordernumber

JOIN tbDate c ON a.dateid = c.dateid

GROUP BY c.theyear, b.itemid

 

spark.sql("SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber JOIN tbDate c ON a.dateid = c.dateid GROUP BY c.theyear, b.itemid").show

结果如下:

+-------+--------------+------------------+                                     

|theyear|        itemid|       SumOfAmount|

+-------+--------------+------------------+

|   2004|43824480810202|           4474.72|

|   2006|YA214325360101|             556.0|

|   2006|BT624202120102|             360.0|

|   2007|AK215371910101|24603.639999999992|

|   2008|AK216169120201|29144.199999999997|

|   2008|YL526228310106|16073.099999999999|

|   2009|KM529221590106| 5124.800000000001|

|   2004|HT224181030201|2898.6000000000004|

|   2004|SG224308320206|           7307.06|

|   2007|04426485470201|14468.800000000001|

|   2007|84326389100102|           9134.11|

|   2007|B4426438020201|           19884.2|

|   2008|YL427437320101|12331.799999999997|

|   2008|MH215303070101|            8827.0|

|   2009|YL629228280106|           12698.4|

|   2009|BL529298020602|            2415.8|

|   2009|F5127363019006|             614.0|

|   2005|24425428180101|          34890.74|

|   2007|YA214127270101|             240.0|

|   2007|MY127134830105|          11099.92|

+-------+--------------+------------------+

 

第二步:在第一步的基础上,统计每年单个货品中的最大金额

SELECT d.theyear, MAX(d.SumOfAmount) AS MaxOfAmount

FROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmount

FROM tbStock a

JOIN tbStockDetail b ON a.ordernumber = b.ordernumber

JOIN tbDate c ON a.dateid = c.dateid

GROUP BY c.theyear, b.itemid

) d

GROUP BY d.theyear

 

spark.sql("SELECT d.theyear, MAX(d.SumOfAmount) AS MaxOfAmount FROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber JOIN tbDate c ON a.dateid = c.dateid GROUP BY c.theyear, b.itemid ) d GROUP BY d.theyear").show

结果如下:

+-------+------------------+                                                    

|theyear|       MaxOfAmount|

+-------+------------------+

|   2007|           70225.1|

|   2006|          113720.6|

|   2004|53401.759999999995|

|   2009|           30029.2|

|   2005|56627.329999999994|

|   2010|            4494.0|

|   2008| 98003.60000000003|

+-------+------------------+

 

第三步:用最大销售额和统计好的每个货品的销售额join,以及用年join,集合得到最畅销货品那一行信息

SELECT DISTINCT e.theyear, e.itemid, f.MaxOfAmount

FROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmount

FROM tbStock a

JOIN tbStockDetail b ON a.ordernumber = b.ordernumber

JOIN tbDate c ON a.dateid = c.dateid

GROUP BY c.theyear, b.itemid

) e

JOIN (SELECT d.theyear, MAX(d.SumOfAmount) AS MaxOfAmount

FROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmount

FROM tbStock a

JOIN tbStockDetail b ON a.ordernumber = b.ordernumber

JOIN tbDate c ON a.dateid = c.dateid

GROUP BY c.theyear, b.itemid

) d

GROUP BY d.theyear

) f ON e.theyear = f.theyear

AND e.SumOfAmount = f.MaxOfAmount

ORDER BY e.theyear

 

spark.sql("SELECT DISTINCT e.theyear, e.itemid, f.maxofamount FROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS sumofamount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber JOIN tbDate c ON a.dateid = c.dateid GROUP BY c.theyear, b.itemid ) e JOIN (SELECT d.theyear, MAX(d.sumofamount) AS maxofamount FROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS sumofamount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber JOIN tbDate c ON a.dateid = c.dateid GROUP BY c.theyear, b.itemid ) d GROUP BY d.theyear ) f ON e.theyear = f.theyear AND e.sumofamount = f.maxofamount ORDER BY e.theyear").show

结果如下:

+-------+--------------+------------------+                                     

|theyear|        itemid|       maxofamount|

+-------+--------------+------------------+

|   2004|JY424420810101|53401.759999999995|

|   2005|24124118880102|56627.329999999994|

|   2006|JY425468460101|          113720.6|

|   2007|JY425468460101|           70225.1|

|   2008|E2628204040101| 98003.60000000003|

|   2009|YL327439080102|           30029.2|

|   2010|SQ429425090101|            4494.0|

+-------+--------------+------------------+

 

7. SparkSQL整合Hive

sparksql可以使用hive的元数据库,如果没有,sparksql也可以自己创建。

  1. 在mysql创建一个普通用户(也可以使用root用户)

SQL
# 创建一个普通用户,并且授权
CREATE USER 'spark'@'%' IDENTIFIED BY 'DoIt123!@#';
GRANT ALL PRIVILEGES ON hivedb.* TO 'spark'@'%' IDENTIFIED BY 'DoIt123!@#' WITH GRANT OPTION;
FLUSH PRIVILEGES;

### mysql8.0以上的语法

  1. 添加一个hive-site.xml到spark的conf目录,里面的内容如下:

XML



    
        javax.jdo.option.ConnectionURL
        jdbc:mysql://node-1.51doit.cn:3306/hivedb?createDatabaseIfNotExist=true
        JDBC connect string for a JDBC metastore
    


    
        javax.jdo.option.ConnectionDriverName
        com.mysql.jdbc.Driver
        Driver class name for a JDBC metastore
    


    
        javax.jdo.option.ConnectionUserName
        spark
        username to use against metastore database
    


    
        javax.jdo.option.ConnectionPassword
        DoIt123!@#
        password to use against metastore database
    

    
     
        hive.metastore.schema.verification
        false
    

    
        datanucleus.schema.autoCreateAll
        true
    

    
        hive.metastore.warehouse.dir
        hdfs://node-1.51doit.cn:8020/user/hive/warehouse
    

  1. 初始化hive的源数据库

Shell
schematool -initSchema -dbType mysql

  1. 上传一个mysql连接驱动,可以将连接驱动放入到spark的安装包的jars或者使用--driver-class-path指定mysql连接驱动的位置

Shell
bin/spark-sql --master spark://node-4:7077,node-5:7077 --driver-class-path /root/mysql-connector-java-5.1.47.jar

  1. 重新启动SparkSQL的命令行

Shell
bin/spark-sql --master spark://node-1.51doit.cn:7077 --driver-class-path /root/mysql-connector-java-5.1.49.jar

Spark SQL也提供JDBC连接支持,这对于让商业智能(BI)工具连接到Spark集群上以及在多用户间共享一个集群的场景都非常有用。JDBC 服务器作为一个独立的Spark 驱动器程序运行,可以在多用户之间共享。任意一个客户端都可以在内存中缓存数据表,对表进行查询。集群的资源以及缓存数据都在所有用户之间共享。

Spark SQL的JDBC服务器与Hive中的HiveServer2相一致。由于使用了Thrift通信协议,它也被称为“Thrift server”。

服务器可以通过 Spark 目录中的 sbin/start-thriftserver.sh 启动。这个 脚本接受的参数选项大多与 spark-submit 相同。默认情况下,服务器会在 localhost:10000 上进行监听,我们可以通过环境变量(HIVE_SERVER2_THRIFT_PORT 和 HIVE_SERVER2_THRIFT_BIND_HOST)修改这些设置,也可以通过 Hive配置选项(hive. server2.thrift.port 和 hive.server2.thrift.bind.host)来修改。

你也可以通过命令行参数:--hiveconf property=value来设置Hive选项。

在 Beeline 客户端中,你可以使用标准的 HiveQL 命令来创建、列举以及查询数据表。

Shell
# spark-sql 启动HiveServer2

#stand alone 模式
sbin/start-thriftserver.sh --master spark://node-1.51doit.cn:7077 --executor-memory 1g --total-executor-cores 8 --driver-class-path /root/mysql-connector-java-5.1.49.jar

# on yarn 模式
sbin/start-thriftserver.sh --master yarn --deploy-mode client --driver-memory 2g --driver-cores 2 --executor-memory 2g --num-executors 3 --driver-class-path /root/mysql-connector-java-5.1.49.jar

Spark的ThriftServer的原理(类似HiveServer2服务)

Spark SQL 6-7_第4张图片

Spark SQL 6-7_第5张图片

启动beeline客户端连接ThriftServer

Shell

#使用beline连接HiveServer

bin/beeline -u jdbc:hive2://node-1.51doit.cn:10000 -n root

你可能感兴趣的:(spark,sql,大数据)