《TCP IP网络编程》第四章

第 4 章 基于 TCP 的服务端/客户端(1)

        根据数据传输方式的不同,基于网络协议的套接字一般分为 TCP 套接字和 UDP 套接字。因为 TCP 套接字是面向连接的,因此又被称为基于流(stream)的套接字。        

        TCP 是 Transmission Control Protocol (传输控制协议)的简写,意为「对数据传输过程的控制」。

        下图为TCP/IP 协议栈:

《TCP IP网络编程》第四章_第1张图片

        TCP/IP 协议栈共分为 4 层,可以理解为数据收发分成了 4 个层次化过程,通过层次化的方式来解决问题。 下面分别介绍一下4个层:

  • 链路层

            链路层是物理链接领域标准化的结果,也是最基本的领域,专门定义LAN、WAN、MAN等网络标准。若两台主机通过网络进行数据交换,则需要物理连接,链路层就负责这些标准。

  • IP 层

            准备好物理连接后就要传输数据。为了在复杂网络中传输数据,首先要考虑路径的选择。向目标传输数据需要经过哪条路径?解决此问题的就是IP层,该层使用的协议就是IP。

             IP 是面向消息的、不可靠的协议。每次传输数据时会帮我们选择路径,但并不一致。如果传输过程中发生错误,则选择其他路径,但是如果发生数据丢失或错误,则无法解决。换言之,IP协议无法应对数据错误。

  • TCP/UDP 层

            IP 层解决数据传输中的路径选择问题,只需照此路径传输数据即可。TCP 和 UDP 层以 IP 层提供的路径信息为基础完成实际的数据传输,故该层又称为传输层。                                        TCP 可以保证数据的可靠传输,但是它发送数据时以 IP 层为基础(这也是协议栈层次化的原因)。IP 层只关注一个数据包(数据传输基本单位)的传输过程。因此,即使传输多个数据包,每个数据包也是由 IP 层实际传输的,也就是说传输顺序及传输本身是不可靠的。若只利用IP层传输数据,则可能导致后传输的数据包B比先传输的数据包A提早到达。另外,传输的数据包A、B、C中可能只收到A和C,甚至收到的C可能已经损毁 。                                           反之,若添加 TCP 协议则按照如下对话方式进行数据交换:                                            《TCP IP网络编程》第四章_第2张图片

    这就是 TCP 的作用。如果交换数据的过程中可以确认对方已经收到数据,并重传丢失的数据,那么即便IP层不保证数据传输,这类通信也是可靠的。

  • 应用层

            上述内容是套接字通信过程中自动处理的。选择数据传输路径、数据确认过程都被隐藏到套接字内部。向程序员提供的工具就是套接字,只需要利用套接字编出程序即可。编写软件的过程中,需要根据程序的特点来决定服务器和客户端之间的数据传输规则,这便是应用层协议。

     

        实现基于 TCP 的服务器/客户端:

        下图为TCP 服务端的默认函数的调用程序 :

《TCP IP网络编程》第四章_第3张图片

  • 调用 socket 函数创建套接字,声明并初始化地址信息的结构体变量,调用 bind 函数向套接字分配地址。
  • 进入等待连接请求状态:

    已经调用了 bind 函数给套接字分配地址,接下来就是要通过调用 listen 函数进入等待链接请求状态。只有调用了 listen 函数,客户端才能进入可发出连接请求的状态。客户端可以调用 connect 函数,向服务端请求连接,对于客户端发来的请求,先进入连接请求等待队列,等待服务端受理请求。

#include 
int listen(int sockfd, int backlog);
//成功时返回0,失败时返回-1
//sock: 希望进入等待连接请求状态的套接字文件描述符,传递的描述符套接字参数称为服务端套接字
//backlog: 连接请求等待队列的长度,若为5,则队列长度为5,表示最多使5个连接请求进入队列            
  • 受理客户端连接请求:

    调用 listen 函数后,套接字应该按序受理客户端发起的连接请求。受理请求就是服务端处理一个连接请求,进入可接受客户端数据的状态。进入这种状态所需的部件是套接字,但是此时使用的不是服务端套接字,此时需要另一个套接字,但是没必要亲自创建,下面的函数将自动创建套接字。

#include 
int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);
/*
成功时返回文件描述符,失败时返回-1
sock: 服务端套接字的文件描述符
addr: 受理的请求中,客户端地址信息会保存到该指针指向的地址
addrlen: 该指针指向的地址中保存第二个参数的结构体长度
*/

        

        accept 函数受理连接请求队列中待处理的客户端连接请求。函数调用成功后,accept 内部将产生用于数据 I/O 的套接字,并返回其文件描述符。需要强调的是套接字是自动创建的,并自动与发起连接请求的客户端建立连接。

注意:accept 函数返回的套接字不等于服务端套接字,也需要通过 close 函数关闭。

        下图为TCP 客户端的默认函数调用顺序:

《TCP IP网络编程》第四章_第4张图片

        与服务端相比,区别就在于「请求连接」,它是创建客户端套接字后向服务端发起的连接请求。服务端调用 listen 函数后创建连接请求等待队列,之后客户端即可请求连接。

#include 
int connect(int sock, struct sockaddr *servaddr, socklen_t addrlen);
/*
成功时返回0,失败返回-1
sock:客户端套接字文件描述符
servaddr: 保存目标服务器端地址信息的变量地址值
addrlen: 第二个结构体参数 servaddr 变量的字节长度
*/

 

客户端调用 connect 函数后,发生以下函数之一才会返回(完成函数调用):

  • 服务端接受连接请求
  • 发生断网等异常状况而中断连接请求

        注意:接受连接不代表服务端调用 accept 函数,其实只是服务器端把连接请求信息记录到等待队列。因此 connect 函数返回后并不应该立即进行数据交换。

        客户端在调用connect函数时自动分配主机的IP,随机分配端口。无需调用标记的bind函数进行分配。

        

        下图为基于 TCP 的服务端/客户端函数调用关系:

《TCP IP网络编程》第四章_第5张图片

  • 客户端只能等到服务端调用 listen 函数后才才能调用 connect 函数
  • 服务器端可能会在客户端调用 connect 之前调用 accept 函数,这时服务器端进入阻塞(blocking)状态,直到客户端调用 connect 函数后接收到连接请求。

实验:实现迭代服务端/客户端:

        程序运行的基本方式:

  • 服务器端在同一时刻只与一个客户端相连,并提供回声服务。
  • 服务器端依次向 5 个客户端提供服务并退出。
  • 客户端接受用户输入的字符串并发送到服务器端。
  • 服务器端将接受的字符串数据传回客户端,即「回声」
  • 服务器端与客户端之间的字符串回声一直执行到客户端输入 Q 为止。

服务器端:

《TCP IP网络编程》第四章_第6张图片

5个客户端:

《TCP IP网络编程》第四章_第7张图片

(客户端没显示完全)

        在一个服务端开启后,用另一个终端窗口开启客户端,然后程序会让你输入字符串,然后客户端输入什么字符串,客户端就会返回什么字符串,按 q 退出。这时服务端的运行并没有结束,服务端一共要处理 5 个客户端的连接,所以另外开多个终端窗口同时开启客户端,服务器按照顺序进行处理。

回声客户端存在的问题:

        以上客户端代码有一个假设「每次调用 read、write函数时都会以字符串为单位执行实际 I/O 操作」

        但是「第二章」中说过「TCP 不存在数据边界」,上述客户端是基于 TCP 的,因此多次调用 write 函数传递的字符串有可能一次性传递到服务端。此时客户端有可能从服务端收到多个字符串,这不是我们想要的结果。还需要考虑服务器的如下情况:

「字符串太长,需要分 2 个包发送!」

        服务端希望通过调用 1 次 write 函数传输数据,但是如果数据太大,操作系统就有可能把数据分成多个数据包发送到客户端。另外,在此过程中,客户端可能在尚未收到全部数据包时就调用 read 函数。

        以上的问题都是源自 TCP 的传输特性,解决方法在第 5 章。


你可能感兴趣的:(书籍专栏,网络,tcp/ip,网络协议)