03 什么是预训练(Transformer 前奏)

博客配套视频链接: https://space.bilibili.com/383551518?spm_id_from=333.1007.0.0 b 站直接看
配套 github 链接:https://github.com/nickchen121/Pre-training-language-model
配套博客链接:https://www.cnblogs.com/nickchen121/p/15105048.html

预训练有什么用

机器学习:偏数学(《统计学习方法》-李航)

深度学习(人工智能)的项目:大数据支持(主流)

我们很多项目没有大数据支持(小数据)

猫狗分类任务:100 张猫和狗的图片 --》给你一张图片,分出是猫还是狗(无法解决的一个问题,精度很低)

100000 张鹅和鸭的图片(已知,有人做过的,通过这10w 张图片做了一个模型 A)

03 什么是预训练(Transformer 前奏)_第1张图片

有人发现,浅层通用的(横竖撇捺)

我通过10w个鹅和鸭训练了一个模型 A,100 层的 CNN

任务 B:100 张猫和狗的图片,分类 --》 训练处 100层的 CNN,不可能实现的

尝试使用 A 的前 50 层,使用 100 层去完成任务 B

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-y3D9VcIQ-1688809443180)(https://imgmd.oss-cn-shanghai.aliyuncs.com/BERT_IMG/%E9%A2%84%E8%AE%AD%E7%BB%83%E7%9A%84%E5%BA%94%E7%94%A8.jpg)]

  1. 冻结:浅层参数不变
  2. 微调:浅层参数会跟着任务 B 训练而改变

预训练是什么

通过一个已经训练好的模型 A,去完成一个小数据量的任务 B(使用了模型 A 的浅层参数)

任务 A 和任务 B 极其相似

预训练怎么用

fairseq 、transformers 库

总结

一个任务 A,一个任务 B,两者极其相似,任务 A 已经训练处一个模型 A,使用模型 A 的浅层参数去训练任务 B,得到模型 B,1.

你可能感兴趣的:(大语言模型,管理体系,AI,transformer,深度学习,人工智能)