Elasticsearch基础

Elasticsearch是搜索服务器

视频地址:https://www.bilibili.com/video/BV1Sy4y1G7LL/?p=6&spm_id_from=333.880.my_history.page.click&vd_source=fc7fa697b97f292319c5b0cde4755484
下载地址:[https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.4.0-linux-x86_64.tar.gz

数据库搜索缺点](https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.4.0-linux-x86_64.tar.gz)

性能低

Elasticsearch基础_第1张图片

功能瑞

Elasticsearch基础_第2张图片

倒排索引

正向索引

Elasticsearch基础_第3张图片

初识倒排索引

Elasticsearch基础_第4张图片
优化:倒排索引将value修改为对应诗名或者id
Elasticsearch基础_第5张图片

Elasticsearch存储和搜索原理

Elasticsearch基础_第6张图片
Elasticsearch基础_第7张图片

Elasticsearch概念

Elasticsearch基础_第8张图片

Elasticsearch和Mysql的不同点

Elasticsearch基础_第9张图片

Elasticsearch下载部署

这里在本机玩,不介绍linux下集群部署
下载后
进入elasticsearch bin目录下
./elasticsearch -d 后台启动
mac电脑操作查看进程
jps 查看进程端口
sudo lsof -nP -p 进程号| grep LISTEN
linux查看端口
jps
netstat -nltp|grep elasticsearch`
Elasticsearch基础_第10张图片
默认配置为9200端口为http请求
9300断后为tcp elasticsearch内部通信
访问9200成功即为elasticsearch启动成功
Elasticsearch基础_第11张图片

Elasticsearch核心概念

索引,映射,文档
Elasticsearch基础_第12张图片

脚本操作ES

基于RESTful风格

操作索引

1.查看es安装成功

GET http://127.0.0.1:9200
Elasticsearch基础_第13张图片

2.添加索引

PUT http://127.0.0.1:9200/goods
Elasticsearch基础_第14张图片

3.查看指定索引信息及所有索引

GET http://127.0.0.1:9200/goods
Elasticsearch基础_第15张图片
GET http://127.0.0.1:9200/_all
Elasticsearch基础_第16张图片

4.删除指定索引

DELETE http://127.0.0.1:9200/goods2
Elasticsearch基础_第17张图片

5.关闭索引

POST http://127.0.0.1:9200/goods/_close
Elasticsearch基础_第18张图片

6.开启索引

POST http://127.0.0.1:9200/goods/_open
Elasticsearch基础_第19张图片

操作映射

简单数据类型

字符串:
Elasticsearch基础_第20张图片
数值:
Elasticsearch基础_第21张图片
布尔
Elasticsearch基础_第22张图片
二进制
Elasticsearch基础_第23张图片
范围类型
在这里插入图片描述
日期
Elasticsearch基础_第24张图片

复杂数据类型

数组
对象
Elasticsearch基础_第25张图片

添加映射

PUT http://127.0.0.1:9200/person/_mapping

{
    "properties":{
        "name":{
            "type":"keyword"
        },
        "age":{
            "type":"integer"
        }
    }
}

Elasticsearch基础_第26张图片

查询映射

GET http://127.0.0.1:9200/person/_mapping
Elasticsearch基础_第27张图片

添加索引的同时添加映射

PUT http://127.0.0.1:9200/person

{
    "mappings":{
    "properties":{
        "name":{
            "type":"keyword"
        },
        "age":{
            "type":"integer"
        }
    }
    }
}

Elasticsearch基础_第28张图片

添加字段

PUT http://127.0.0.1:9200/person/_mapping

{
    "properties":{
        "address":{
            "type":"text"
        }
    }
}

Elasticsearch基础_第29张图片

操作文档

添加文档

添加文档指定文档id

PUT http://127.0.0.1:9200/person/_doc/1

{
    "name":"张三",
    "age":20,
    "address":"北京"
}

Elasticsearch基础_第30张图片

添加文档不指定文档id

POST http://127.0.0.1:9200/person/_doc/

{
    "name":"李四",
    "age":18,
    "address":"朝阳"
}

Elasticsearch基础_第31张图片

查询文档

根据id查询文档

GET http://127.0.0.1:9200/person/_doc/8uh0bYgBAYb4xsq8VhGD
Elasticsearch基础_第32张图片

查询索引下的所有文档

PUT http://127.0.0.1:9200/person/_doc/_search
Elasticsearch基础_第33张图片

修改文档

PUT http://127.0.0.1:9200/person/_doc/1

{
    "name":"张飞",
    "age":20,
    "address":"北京"
}

Elasticsearch基础_第34张图片

删除文档

根据id删除文档

DELETE http://127.0.0.1:9200/person/_doc/1

Elasticsearch基础_第35张图片

分词器

es内置分词器对中文很不友好
Elasticsearch基础_第36张图片

测试

GET http://127.0.0.1:9200/_analyze

{
    "analyzer":"standard",
    "text":"我爱北京天安门"
}

Elasticsearch基础_第37张图片

下载ik分词器

ik分词器和es适配版本
Elasticsearch基础_第38张图片
这里用的es为7.17.10所以ik分词器下载地址为
https://github.com/medcl/elasticsearch-analysis-ik/releases/tag/v7.17.1
下载完后放入es的plugin目录下
Elasticsearch基础_第39张图片
将解压的elasticsearch-analysis-ik-7.17.1下的文件cp到plugin/analysis-ik下
cp -r /Users/hejiawang/elasticsearch-7.17.10/plugins/analysis-ik/elasticsearch-analysis-ik-7.17.1/* /Users/hejiawang/elasticsearch-7.17.10/plugins/analysis-ik
将ik分词器下的config文件copy到es的config目录下
cp -r /Users/hejiawang/elasticsearch-7.17.10/plugins/analysis-ik/elasticsearch-analysis-ik-7.17.1/config/* /Users/hejiawang/elasticsearch-7.17.10/config
Elasticsearch基础_第40张图片
在这里插入图片描述
重启es
启动es报错
Elasticsearch基础_第41张图片
vi /Users/hejiawang/elasticsearch-7.17.10/plugins/analysis-ik/plugin-descriptor.properties
将elasticsearch.version=7.17.1 改为elasticsearch.version=7.17.10
在这里插入图片描述
再次重启

使用ik分词器

ik_smart粗力度分词

GET http://127.0.0.1:9200/_analyze

{
    "analyzer":"ik_smart",
    "text":"我爱北京天安门"
}

Elasticsearch基础_第42张图片

ik_smart细力度分词

GET http://127.0.0.1:9200/_analyze

{
    "analyzer":"ik_max_word",
    "text":"我爱北京天安门"
}

Elasticsearch基础_第43张图片

查询文档

词条查询

词条查询不会分析查询条件,只有当词条和查询字符串完全匹配时才匹配搜索

全文查询

全文查询会分析查询条件,先将查询条件进行分词,然后查询,求并集

Demo演示

指定索引查询所有数据 有一条数据
Elasticsearch基础_第44张图片
按词条查询文档
因为查询条件为北京,es默认address使用默认分词器,分词为北,京,朝,阳 无法匹配,除非创建mapping时候指定address映射为ik_max_word即可查到
GET http://127.0.0.1:9200/person/_search

{
    "query":{
        "term":{
            "address":{
                "value":"北京"
            }
        }
    }
}

Elasticsearch基础_第45张图片
全文查询
GET http://127.0.0.1:9200/person/_search

{
    "query":{
        "match":{
            "address": "北京"
        }
    }
}

Elasticsearch基础_第46张图片

JAVA操作ES

Springboot整合ES

创建Springboot项目

1.引入pom

        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>elasticsearch-rest-high-level-client</artifactId>
            <version>7.17.1</version>
        </dependency>
        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>elasticsearch-rest-client</artifactId>
            <version>7.17.1</version>
        </dependency>
        <dependency>
            <groupId>org.elasticsearch</groupId>
            <artifactId>elasticsearch</artifactId>
            <version>7.17.1</version>
        </dependency>

2.创建自动装在配置类

package com.hejiawang.elasticsearch.config;

import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
@ConfigurationProperties(prefix = "elasticsearch")
public class ElasticsearchConfig  {
    private String host;
    private int port;
    public void setHost(String host) {
        this.host = host;
    }

    public void setPort(int port) {
        this.port = port;
    }

    @Bean
    public RestHighLevelClient client(){
        return new RestHighLevelClient(RestClient.builder(new HttpHost(host,port,"http")));
    }
}

3.创建application.yml并且加上配置

elasticsearch:
  host: 127.0.0.1
  port: 9200

4.创建测试类

package com.hejiawang.elasticsearch;

import com.hejiawang.elasticsearch.config.ElasticsearchConfig;
import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

@SpringBootTest
class ElasticsearchApplicationTests {
    @Autowired
    RestHighLevelClient client;
    @Test
    void contextLoads() {
//        1.创建es客户端对象
//        RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("127.0.0.1",9200,"http")));
        System.out.println(client);
    }
}

javaAPI操作ES

添加索引

添加索引不指定mapping

    /*添加索引*/
    @Test
    public void addIndex() throws IOException {
//        1.使用client获取操作索引对象
        IndicesClient indices = client.indices();
//        2.具体操作返回值
        CreateIndexRequest createRequest =  new CreateIndexRequest("test_hejiawang");
        CreateIndexResponse response = indices.create(createRequest, RequestOptions.DEFAULT);
//        3.根据返回值判断结果
        System.out.println(response.isAcknowledged());
    }

Elasticsearch基础_第47张图片

添加索引指定mapping

    /*添加索引*/
    @Test
    public void addIndex() throws IOException {
//        1.使用client获取操作索引对象
        IndicesClient indices = client.indices();
//        2.具体操作返回值
        CreateIndexRequest createRequest =  new CreateIndexRequest("test_hejiawang2");
//        2.1设置mapping
        String mapping = "{\n" +
                "    \"properties\":{\n" +
                "        \"name\":{\n" +
                "            \"type\":\"keyword\"\n" +
                "        },\n" +
                "        \"age\":{\n" +
                "            \"type\":\"integer\"\n" +
                "        }\n" +
                "    }\n" +
                "}";
        createRequest.mapping(mapping, XContentType.JSON);
        CreateIndexResponse response = indices.create(createRequest, RequestOptions.DEFAULT);
//        3.根据返回值判断结果
        System.out.println(response.isAcknowledged());
    }

Elasticsearch基础_第48张图片

查询索引

    /*查询索引*/
    @Test
    public void queryIndex() throws IOException {
        //        1.使用client获取操作索引对象
        IndicesClient indices = client.indices();
        GetIndexRequest getRequest = new GetIndexRequest("test_hejiawang2");
        GetIndexResponse response = indices.get(getRequest, RequestOptions.DEFAULT);
//        获取结果
        Map<String, MappingMetadata> mappings = response.getMappings();
        for (String key : mappings.keySet()){
            System.out.println(key+":"+mappings.get(key).getSourceAsMap());
        }
    }

Elasticsearch基础_第49张图片

删除索引

    /*删除索引*/
    @Test
    public void deleteIndex() throws IOException {
        //        1.使用client获取操作索引对象
        IndicesClient indices = client.indices();
        DeleteIndexRequest deleteRequest = new DeleteIndexRequest("test_hejiawang2");
        AcknowledgedResponse response = indices.delete(deleteRequest, RequestOptions.DEFAULT);
//        3.根据返回值判断结果
        System.out.println(response.isAcknowledged());
    }

Elasticsearch基础_第50张图片

判断索引是否存在

    /*判断索引是否存在*/
    @Test
    public void existIndex() throws IOException {
        //        1.使用client获取操作索引对象
        IndicesClient indices = client.indices();
        GetIndexRequest request = new GetIndexRequest("test_hejiawang2");
        boolean exists = indices.exists(request, RequestOptions.DEFAULT);
//        3.根据返回值判断结果
        System.out.println(exists);
    }

Elasticsearch基础_第51张图片

添加文档

添加文档使用map作为数据

    /*添加文档*/
    @Test
    public void addDoc() throws IOException {
//        1.获取操作文档的对象
        Map data = new HashMap<>();
        data.put("name","张三");
        data.put("age",18);
        IndexRequest request = new IndexRequest("test_hejiawang2").id("1").source(data);
        IndexResponse response = client.index(request, RequestOptions.DEFAULT);
//        2.获取结果
        System.out.println(response.getId());
    }

Elasticsearch基础_第52张图片

添加文档使用对象作为数据

创建Person对象

    /*添加文档,使用对象作为数据*/
    @Test
    public void addDoc2() throws IOException {
//        1.获取操作文档的对象
        Person person = new Person();
        person.setName("王五");
        person.setAge(19);
//        将对象转为Json
        String data = JSON.toJSONString(person);
        IndexRequest request = new IndexRequest("test_hejiawang2").id("1").source(data,XContentType.JSON);
        IndexResponse response = client.index(request, RequestOptions.DEFAULT);
//        2.获取结果
        System.out.println(response.getId());
    }

Elasticsearch基础_第53张图片

修改文档

    /*修改文档,如果id存在为添加文档,如果id不存在为修改文档*/
    @Test
    public void updateDoc() throws IOException {
//        1.获取操作文档的对象
        Person person = new Person();
        person.setName("王五");
        person.setAge(19);
//        将对象转为Json
        String data = JSON.toJSONString(person);
        IndexRequest request = new IndexRequest("test_hejiawang2").id("1").source(data,XContentType.JSON);
        IndexResponse response = client.index(request, RequestOptions.DEFAULT);
//        2.获取结果
        System.out.println(response.getId());
    }

根据id查询文档

    /*根据id查询文档*/
    @Test
    public void findDocById() throws IOException {
         GetRequest request = new GetRequest("test_hejiawang2","1");
        GetResponse response = client.get(request, RequestOptions.DEFAULT);
//        2.获取结果
        System.out.println(response.getSourceAsString());
    }

Elasticsearch基础_第54张图片

删除文档

    /*根据id删除文档*/
    @Test
    public void deleteDocById() throws IOException {
        DeleteRequest request = new DeleteRequest("test_hejiawang2", "1");
        DeleteResponse response = client.delete(request, RequestOptions.DEFAULT);
//        2.获取结果
        System.out.println(response.getId());
    }

Elasticsearch基础_第55张图片

ES高级操作

批量操作

批量操作api调用

Elasticsearch基础_第56张图片
批量增删改查
POST http://127.0.0.1:9200/_bulk
postmain中最后一定要有个空行,不然会报错

{"delete":{"_index":"test_hejiawang2","_id":"1"}}
{"create":{"_index":"test_hejiawang2","_id":"2"}}
{"name":"何佳旺","age":18}
{"update":{"_index":"test_hejiawang2","_id":"1"}}
{"doc":{"name":"zzz"}}

Elasticsearch基础_第57张图片

批量操作java代码

    @Test
    public void testBulk() throws IOException {
//        创建bulkrequest对象
        BulkRequest request = new BulkRequest();
//         添加操作
//        1.删除1号记录
        DeleteRequest deleteRequest = new DeleteRequest("test_hejiawang2","1");
        request.add(deleteRequest);
//        2.添加6号记录
        Map map = new HashMap<>();
        map.put("name","飞哥");
        IndexRequest indexRequest = new IndexRequest("test_hejiawang2").id("6").source(map);
        request.add(indexRequest);
//        3.修改6号记录
        Map map2 = new HashMap();
        map2.put("name","肥哥");
        UpdateRequest updateRequest = new UpdateRequest("test_hejiawang2","6").doc(map2);
        request.add(updateRequest);
//        添加操作
        BulkResponse response = client.bulk(request, RequestOptions.DEFAULT);
        RestStatus status = response.status();
        System.out.println(status);
    }

Elasticsearch基础_第58张图片

导入数据

1.mysql创建表

CREATE TABLE goods(
    id bigint(20),
    title varchar(100),
    price decimal(20,2),
    stock int(10),
    saleNum int(10),
    creatTime dateTime,
    categoryName varchar(200),
    brandName varchar(100),
    spec varchar(200)
)

2.es创建索引

PUT http://127.0.0.1:9200/goods

{
    "mappings":{
        "properties":{
            "titles":{
                "type": "text",
                "analyzer":"ik_smart"
            },
            "price":{
                "type": "double"
            },
            "createTime":{
                "type": "date"
            },
            "categoryName":{
                "type": "keyword"
            },
            "brandName":{
                "type": "keyword"
            },
            "spec":{
                "type": "object"
            },
            "saleNum":{
                "type": "integer"
            },
            "stock":{
                "type": "integer"
            }
        }
    }
}

3.在数据库中准备数据数据

insert into 3309test.goods (`id`, `title`, `price`, `stock`, `saleNum`, `creatTime`, `categoryName`, `brandName`, `spec`) values (1, '华为5G', 2399, null, 38, NOW() , '手机', '华为', '{"机身内存":"16g","网络":"联通2G"}');
insert into 3309test.goods (`id`, `title`, `price`, `stock`, `saleNum`, `creatTime`, `categoryName`, `brandName`, `spec`) values (2, '苹果 1', 2399, null, 38, NOW() , '手机', '苹果', '{"机身内存":"16g","网络":"联通2G"}');

4.引入相关依赖

        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.4</version>
        </dependency>
                <dependency>
            <groupId>org.mybatis.spring.boot</groupId>
            <artifactId>mybatis-spring-boot-starter</artifactId>
            <version>2.1.0</version>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>8.0.28</version>
        </dependency>

5.准备domain

package com.hejiawang.elasticsearch.domain;

import com.alibaba.fastjson.annotation.JSONField;

import java.util.Date;
import java.util.Map;

public class Goods {
    private int id;
    private String title;
    private double price;
    private int stock;
    private int saleNum;
    private Date creatTime;
    private String categoryName;
    private String brandName;
    private Map spec;
    @JSONField(serialize = false) //在转换JSON时忽略该字段
    private String specStr; //接受数据库的信息"{}"

    public int getId() {
        return id;
    }

    public void setId(int id) {
        this.id = id;
    }

    public String getTitle() {
        return title;
    }

    public void setTitle(String title) {
        this.title = title;
    }

    public double getPrice() {
        return price;
    }

    public void setPrice(double price) {
        this.price = price;
    }

    public int getStock() {
        return stock;
    }

    public void setStock(int stock) {
        this.stock = stock;
    }

    public int getSaleNum() {
        return saleNum;
    }

    public void setSaleNum(int saleNum) {
        this.saleNum = saleNum;
    }

    public Date getCreatTime() {
        return creatTime;
    }

    public void setCreatTime(Date creatTime) {
        this.creatTime = creatTime;
    }

    public String getCategoryName() {
        return categoryName;
    }

    public void setCategoryName(String categoryName) {
        this.categoryName = categoryName;
    }

    public String getBrandName() {
        return brandName;
    }

    public void setBrandName(String brandName) {
        this.brandName = brandName;
    }

    public Map getSpec() {
        return spec;
    }

    public void setSpec(Map spec) {
        this.spec = spec;
    }

    public String getSpecStr() {
        return specStr;
    }

    public void setSpecStr(String specStr) {
        this.specStr = specStr;
    }

    @Override
    public String toString() {
        return "Goods{" +
                "id=" + id +
                ", title='" + title + '\'' +
                ", price=" + price +
                ", stock=" + stock +
                ", saleNum=" + saleNum +
                ", creatTime=" + creatTime +
                ", categoryName='" + categoryName + '\'' +
                ", brandName='" + brandName + '\'' +
                ", spec=" + spec +
                ", specStr='" + specStr + '\'' +
                '}';
    }
}

6.准备mapper及xml

GoodMapper

package com.hejiawang.elasticsearch.mapper;

import com.hejiawang.elasticsearch.domain.Goods;
import org.apache.ibatis.annotations.Mapper;
import org.springframework.stereotype.Repository;

import java.util.List;

@Repository
@Mapper
public interface GoodsMapper {
    /*
    * 查询所有
    * */
    public List<Goods> findAll();
}

GoodMapper.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapper
        PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
        "http://mybatis.org/dtd/mybatis-3-mapper.dtd">

<mapper namespace="com.hejiawang.elasticsearch.mapper.GoodsMapper">
    <select id="findAll" resultType="goods">
        select id,
               title,
               price,
               stock,
               saleNum,
               creatTime,
               categoryName,
               brandName,
               spec as specStr
        from goods
    </select>
</mapper>

7.BulkRequest批量导入数据

    /*
    * 2.批量导入
    * */
    @Test
    public void importData() throws IOException {
//        1.查询所有数据,mysql
        List<Goods> goodsList = goodsMapper.findAll();
//        goodsList.forEach(n-> System.out.println(n.toString()));
//        2.导入数据
        BulkRequest bulkRequest = new BulkRequest();
//        2.1循环goodsList,创建IndexRequest添加数据
        for (Goods goods : goodsList) {
//            2.2设置spec规格信息,Map的数据 specStr{}
            goods.setSpec(JSON.parseObject(goods.getSpecStr(),Map.class));
//            System.out.println(goods.toString());
//            System.out.println(JSON.toJSONString(goods));
            IndexRequest indexRequest = new IndexRequest("goods");
            indexRequest.id(goods.getId()+"").source(JSON.toJSONString(goods), XContentType.JSON);
            bulkRequest.add(indexRequest);
        }
        BulkResponse response = client.bulk(bulkRequest,RequestOptions.DEFAULT);
    }

8.执行导入结果

在这里插入图片描述

各种查询

matchAll查询

Elasticsearch基础_第59张图片

matchALL脚本查询

GET http://127.0.0.1:9200/goods/_search
默认显示10条数据

{
    "query":{
        "match_all":{}
    }
}

Elasticsearch基础_第60张图片
分页需要带上from,size

{
    "query":{
        "match_all":{}
    },
    "from":0,
    "size":100
}

matchAll javaAPI操作

    /*
    * 查询所有
    * 1.matchAll
    * 2.将查询结果分装为Goods对象,封装到list中
    * 3.分页,默认为10条
    * */
    @Test
   public void testMatchAll() throws IOException {
//        1.构建查询条件构造器,指定查询索引名称
        SearchRequest searchRequest = new SearchRequest("goods");
//        2.创建查询条件构造对象
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
//        添加分页信息
        sourceBuilder.from(0);
        sourceBuilder.size(100);
//        3.指定查询条件
        MatchAllQueryBuilder queryBuilder = QueryBuilders.matchAllQuery(); //查询所有文档
        sourceBuilder.query(queryBuilder);
        searchRequest.source(sourceBuilder);
        SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
//        4.获取命中对象
        SearchHits searchHits = response.getHits();
//        5.获取总记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);

//        获取Hits数据 数组
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit:hits){
//           获取json字符串格式的数据
            String sourceAsString = hit.getSourceAsString();
//            System.out.println(sourceAsString);
//            转为json对象
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        goodsList.forEach(System.out::println);
    }

在这里插入图片描述

term查询

Elasticsearch基础_第61张图片

term脚本查询

GET http://127.0.0.1:9200/goods/_search

{
    "query":{
        "term":{
            "categoryName":{
                "value":"手机"
            }
        }
    }
}

Elasticsearch基础_第62张图片

termAPI查询

    /**
     * termQuery:词条查询
     */
    @Test
    public void testTermQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        TermQueryBuilder queryBuilder = QueryBuilders.termQuery("categoryName","手机"); //term词条查询
        sourceBuilder.query(queryBuilder);
        searchRequest.source(sourceBuilder);
        SearchResponse response = client.search(searchRequest,RequestOptions.DEFAULT);
        SearchHits searchHits = response.getHits();
        //        5.获取总记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        //        获取Hits数据 数组
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit:hits){
//           获取json字符串格式的数据
            String sourceAsString = hit.getSourceAsString();
//            System.out.println(sourceAsString);
//            转为json对象
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        goodsList.forEach(System.out::println);
    }

Elasticsearch基础_第63张图片

match查询

Elasticsearch基础_第64张图片

match脚本查询

GET http://127.0.0.1:9200/goods/_search

{
    "query":{
        "match":{
            "title":{
                "query":"三星",
                "operator":"and"
            }
        }
    }
}

Elasticsearch基础_第65张图片

match API查询

    /**
     * termQuery:Match查询
     */
    @Test
    public void testMatchQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        MatchQueryBuilder queryBuilder = QueryBuilders.matchQuery("title","三星"); //match词条查询
        queryBuilder.operator(Operator.AND); //求并集
        sourceBuilder.query(queryBuilder);
        searchRequest.source(sourceBuilder);
        SearchResponse response = client.search(searchRequest,RequestOptions.DEFAULT);
        SearchHits searchHits = response.getHits();
        //        5.获取总记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        //        获取Hits数据 数组
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit:hits){
//           获取json字符串格式的数据
            String sourceAsString = hit.getSourceAsString();
//            System.out.println(sourceAsString);
//            转为json对象
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        goodsList.forEach(System.out::println);
    }

Elasticsearch基础_第66张图片

其他查询

模糊查询脚本

Elasticsearch基础_第67张图片

模糊查询API

    /**
     * wildQuery:模糊查询
     */
    @Test
    public void testWildcardQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        WildcardQueryBuilder queryBuilder = QueryBuilders.wildcardQuery("title","三*"); 
        sourceBuilder.query(queryBuilder);
        searchRequest.source(sourceBuilder);
        SearchResponse response = client.search(searchRequest,RequestOptions.DEFAULT);
        SearchHits searchHits = response.getHits();
        //        5.获取总记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        //        获取Hits数据 数组
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit:hits){
//           获取json字符串格式的数据
            String sourceAsString = hit.getSourceAsString();
//            System.out.println(sourceAsString);
//            转为json对象
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        goodsList.forEach(System.out::println);
    }

Elasticsearch基础_第68张图片

正则查询脚本

Elasticsearch基础_第69张图片

正则查询API

    /**
     * RegexpQuery:正则查询
     */
    @Test
    public void testRegexpQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        RegexpQueryBuilder queryBuilder = QueryBuilders.regexpQuery("title","\\w+(.)*"); //
        sourceBuilder.query(queryBuilder);
        searchRequest.source(sourceBuilder);
        SearchResponse response = client.search(searchRequest,RequestOptions.DEFAULT);
        SearchHits searchHits = response.getHits();
        //        5.获取总记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        //        获取Hits数据 数组
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit:hits){
//           获取json字符串格式的数据
            String sourceAsString = hit.getSourceAsString();
//            System.out.println(sourceAsString);
//            转为json对象
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        goodsList.forEach(System.out::println);
    }

前缀查询脚本

Elasticsearch基础_第70张图片

前缀查询API

    /**
     * PrefixQuery:前缀查询
     */
    @Test
    public void testPrefixQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        PrefixQueryBuilder queryBuilder = QueryBuilders.prefixQuery("title","三"); //match词条查询
        sourceBuilder.query(queryBuilder);
        searchRequest.source(sourceBuilder);
        SearchResponse response = client.search(searchRequest,RequestOptions.DEFAULT);
        SearchHits searchHits = response.getHits();
        //        5.获取总记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        //        获取Hits数据 数组
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit:hits){
//           获取json字符串格式的数据
            String sourceAsString = hit.getSourceAsString();
//            System.out.println(sourceAsString);
//            转为json对象
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        goodsList.forEach(System.out::println);
    }

Elasticsearch基础_第71张图片

范围查询脚本

Elasticsearch基础_第72张图片
Elasticsearch基础_第73张图片

范围查询API

    /**
     * rangeQuery:范围查询
     */
    @Test
    public void testPrefixQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        RangeQueryBuilder queryBuilder = QueryBuilders.rangeQuery("price");
        queryBuilder.gte(2000);
        queryBuilder.lte(3000);
        sourceBuilder.query(queryBuilder);
//        排序
        sourceBuilder.sort("price", SortOrder.ASC);
        searchRequest.source(sourceBuilder);
        SearchResponse response = client.search(searchRequest,RequestOptions.DEFAULT);
        SearchHits searchHits = response.getHits();
        //        5.获取总记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        //        获取Hits数据 数组
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit:hits){
//           获取json字符串格式的数据
            String sourceAsString = hit.getSourceAsString();
//            System.out.println(sourceAsString);
//            转为json对象
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        goodsList.forEach(System.out::println);
    }

queryString脚本查询

Elasticsearch基础_第74张图片Elasticsearch基础_第75张图片

queryString API

    /**
     * queryString:范围查询
     */
    @Test
    public void testQueryString() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        QueryStringQueryBuilder queryBuilder = QueryBuilders.queryStringQuery("三星").field("title").field("brandName").defaultOperator(Operator.OR);
        sourceBuilder.query(queryBuilder);
        searchRequest.source(sourceBuilder);
        SearchResponse response = client.search(searchRequest,RequestOptions.DEFAULT);
        SearchHits searchHits = response.getHits();
        //        5.获取总记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        //        获取Hits数据 数组
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit:hits){
//           获取json字符串格式的数据
            String sourceAsString = hit.getSourceAsString();
//            System.out.println(sourceAsString);
//            转为json对象
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        goodsList.forEach(System.out::println);
    }

Elasticsearch基础_第76张图片

布尔查询脚本

Elasticsearch基础_第77张图片
Elasticsearch基础_第78张图片

聚合查询脚本

Elasticsearch基础_第79张图片
Elasticsearch基础_第80张图片

聚合查询API

    /**
     * 聚合查询:桶聚合,分词查询
     * 1.查询title包含手机的数据
     * 2.查询品牌列表
     */
    @Test
    public void testAggQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
//        1.查询title包含三星的数据
        MatchQueryBuilder queryBuilder = QueryBuilders.matchQuery("title", "三星");
        sourceBuilder.query(queryBuilder);
//        2.查询品牌列表
        /*
        * 参数
        *   1.自定义的名称,将来用于获取数据
        *   2.分组的字段
        * */
        TermsAggregationBuilder builder = AggregationBuilders.terms("goods_brands").field("brandName").size(100);
        sourceBuilder.aggregation(builder);
        searchRequest.source(sourceBuilder);
        SearchResponse response = client.search(searchRequest,RequestOptions.DEFAULT);
        SearchHits searchHits = response.getHits();
        //        5.获取总记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        //        获取Hits数据 数组
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit:hits){
//           获取json字符串格式的数据
            String sourceAsString = hit.getSourceAsString();
//            System.out.println(sourceAsString);
//            转为json对象
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        goodsList.forEach(System.out::println);
//        获取聚合结果
        Aggregations aggregations = response.getAggregations();
        Map<String, Aggregation> aggregationMap = aggregations.asMap();
//        System.out.println(aggregationMap);
        Terms goodsBrands = (Terms) aggregationMap.get("goods_brands");
        List<? extends Terms.Bucket> buckets = goodsBrands.getBuckets();
        List brands = new ArrayList();
        for (Terms.Bucket bucket: buckets){
            Object key = bucket.getKey();
            brands.add(key);
        }
        brands.forEach(System.out::println);
    }

Elasticsearch基础_第81张图片

高亮查询脚本

Elasticsearch基础_第82张图片

高亮查询API

    /**
     * 高亮查询:
     * 1.查询title包含手机的数据
     *  高亮字段
     *  前缀
     *  后缀
     *  2.讲高亮了的字段数据替换原有数据
     */
    @Test
    public void testHighLightQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
//        1.查询title包含三星的数据
        MatchQueryBuilder queryBuilder = QueryBuilders.matchQuery("title", "苹果");
        sourceBuilder.query(queryBuilder);
//        2.设置高亮
        HighlightBuilder highlightBuilder = new HighlightBuilder();
//        设置三要素
        highlightBuilder.field("title");
        highlightBuilder.preTags("");
        highlightBuilder.postTags("");
        sourceBuilder.highlighter(highlightBuilder);
//        2.查询品牌列表
        /*
         * 参数
         *   1.自定义的名称,将来用于获取数据
         *   2.分组的字段
         * */
        TermsAggregationBuilder builder = AggregationBuilders.terms("goods_brands").field("brandName").size(100);
        sourceBuilder.aggregation(builder);
        searchRequest.source(sourceBuilder);
        SearchResponse response = client.search(searchRequest,RequestOptions.DEFAULT);
        SearchHits searchHits = response.getHits();
        //        5.获取总记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);
        //        获取Hits数据 数组
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit:hits){
//           获取json字符串格式的数据
            String sourceAsString = hit.getSourceAsString();
//            System.out.println(sourceAsString);
//            转为json对象
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
//            获取高亮结果,替换goods中的title
            Map<String, HighlightField> highlightFields = hit.getHighlightFields();
            HighlightField highlightField = highlightFields.get("title");
            Text[] fragments = highlightField.fragments();
//            替换
            goods.setTitle(fragments[0].toString());
            goodsList.add(goods);
        }
        goodsList.forEach(System.out::println);
//        获取聚合结果
        Aggregations aggregations = response.getAggregations();
        Map<String, Aggregation> aggregationMap = aggregations.asMap();
//        System.out.println(aggregationMap);
        Terms goodsBrands = (Terms) aggregationMap.get("goods_brands");
        List<? extends Terms.Bucket> buckets = goodsBrands.getBuckets();
        List brands = new ArrayList();
        for (Terms.Bucket bucket: buckets){
            Object key = bucket.getKey();
            brands.add(key);
        }
        brands.forEach(System.out::println);
    }

索引别名和重建索引

重建索引

1.创建V1索引

PUT http://127.0.0.1:9200/student_index_v1

{
    "mappings":{
        "properties":{
            "birthday":{
                "type":"date"
            }
        }
    }
}

2.往V1索引中插入数据

PUT http://127.0.0.1:9200/student_index_v1/_doc/1

{
    "birthday":"2000-11-21"
}

Elasticsearch基础_第83张图片

3.创建V2的索引

PUT http://127.0.0.1:9200/student_index_v2

{
    "mappings":{
        "properties":{
            "birthday":{
                "type":"date"
            }
        }
    }
}

4.将V1索引中的数据copy到V2索引中

PUT http://127.0.0.1:9200/_reindex

{
    "source":{
        "index":"student_index_v1"
    },
    "dest":{
        "index":"student_index_v2"
    }
}

Elasticsearch基础_第84张图片

对索引取别名

POST http://127.0.0.1:9200/student_index_v2/_alias/student_index_v3
Elasticsearch基础_第85张图片

ES集群管理

ES集群概念

Elasticsearch基础_第86张图片

ES分布式基本概念

Elasticsearch基础_第87张图片

ES分片原则及主机节点预估

Elasticsearch基础_第88张图片

ES路由原则

Elasticsearch基础_第89张图片

ES脑裂

脑裂原因

Elasticsearch基础_第90张图片

避免脑裂

Elasticsearch基础_第91张图片

你可能感兴趣的:(elasticsearch,大数据,搜索引擎)