kafka入门,生产者异步发送、回调函数,同步发送(四)

一、创建Maven项目

引入依赖

    <dependencies>
        <dependency>
            <groupId>org.apache.kafkagroupId>
            <artifactId>kafka-clientsartifactId>
            <version>3.0.0version>
        dependency>
    dependencies>

二、异步发送

 public static void main(String[] args) throws InterruptedException, ExecutionException {
        //1、创建kafka生产者的配置对象
        Properties properties=new Properties();
        //2、给kafka配置对象添加配置信息:bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop100:9092");
        //key,value序列化
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        //3、创建kafka生产者对象
        KafkaProducer<String,String> kafkaProducer=new KafkaProducer<String, String>(properties);
        //4.调用send发送消息
        for (int i = 0; i < 100; i++) {
            //异步发送 不带回调函数
            kafkaProducer.send(new ProducerRecord<>("first", "kafka " + i));
        }
        //关闭资源
        kafkaProducer.close();
    }
    

三、回调函数

回调函数会在producer收到ack时调用,该方法有两个参数,分别是元数据信息(RecordMetadata)和异常信息(Exception),如果Exception为null,说明信息发送失败
注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试。

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        //1、创建kafka生产者的配置对象
        Properties properties=new Properties();
        //2、给kafka配置对象添加配置信息:bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop100:9092");
        //key,value序列化
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        //3、创建kafka生产者对象
        KafkaProducer<String,String> kafkaProducer=new KafkaProducer<String, String>(properties);
        //4.调用send发送消息
        for (int i = 0; i < 100; i++) {
           
            //异步发送带回调函数
            kafkaProducer.send(new ProducerRecord<>("first", "kafka " + i), new Callback() {
                @Override
                public void onCompletion(RecordMetadata metadata, Exception e) {
                    if(e==null){
                        //没用一次输出,输出信息到控制台
                        System.out.println(String.format("主题:%s,分区:%s",metadata.topic(),metadata.partition()));
                    }else {
                        e.printStackTrace();
                    }
                }
            });
            //延迟一会,数据会发送到不同分区,发送太快则可能会到同个分区 16K 0ms
            Thread.sleep(2);
        }
        //关闭资源
        kafkaProducer.close();
    }
}

四、同步发送

只需在异步发送的基础上,再调用一下 get()方法即可

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        //1、创建kafka生产者的配置对象
        Properties properties=new Properties();
        //2、给kafka配置对象添加配置信息:bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop100:9092");
        //key,value序列化
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        //3、创建kafka生产者对象
        KafkaProducer<String,String> kafkaProducer=new KafkaProducer<String, String>(properties);
        //4.调用send发送消息
        for (int i = 0; i < 100; i++) {
            //同步发送
            kafkaProducer.send(new ProducerRecord<>("first", "kafka " + i)).get();
        }
        //关闭资源
        kafkaProducer.close();
    }

你可能感兴趣的:(kafka,linq,分布式)