LA 3516 Exploring Pyramids (记忆化搜索)

题意

给定一个DFS序列,问能有多少树与之对应。

思路

设输入序列为S,dp(i, j)为子序列Si, Si+1, ……, Sj对应的树的个数,则边界条件为d(i, i) = 1,且Si != Sj时d(i, j) = 0(因为起点和终点应该是同一个点)。在其他情况下,设第一个分支在Sk时回到树根(必须有Si == Sk),则这个分支对应的序列是Si+1, Si+2, …… , Sk-1,方案数为dp(i+1, k-1);其他分支访问序列为Sk, Sk+1, ……, Sj,方案数为dp(k, j)。所以转移方程为:dp(i, j) = sum{dp(i+1, k-1) * dp(k, j)   s[i]==s[k], i+2 <= k <= j }

代码

  [cpp] #include <iostream> #include <cstdio> #include <cmath> #include <vector> #include <algorithm> #include <string> #include <cstring> #include <set> #include <queue> #define MID(x,y) ((x+y)/2) #define MEM(a,b) memset(a,b,sizeof(a)) #define REP(i, begin, m) for (int i = begin; i < begin+m; i ++) using namespace std; const int maxn = 303; int d[maxn][maxn]; string s; int dp(int i, int j){ if (i == j) return 1; if (s[i] != s[j]) return 0; int res = d[i][j]; if (res >= 0) return d[i][j]; res = 0; for (int k = i+2; k <= j; k ++) if (s[i] == s[k]){ res = (res + (long long)dp(i+1, k-1) * dp(k, j)) % 1000000000; } d[i][j] = res; return res; } int main(){ //freopen("test.in", "r", stdin); //freopen("test.out", "w", stdout); while(cin >> s){ MEM(d, -1); printf("%d\n", dp(0, s.size()-1)); } return 0; } [/cpp]

你可能感兴趣的:(exp)