- python与excel整合全教程
刘同学Python学习日记
pythonexcel开发语言
Python与Excel的整合非常强大,尤其适合处理大数据、自动化表格操作以及进行高级数据分析。以下是一个全教程,涵盖常用的Python库及其应用:1.准备工作安装必要的库:使用以下命令安装常用库:pipinstallopenpyxlpandasxlrdxlsxwriterpywin32openpyxl:用于操作Excel的.xlsx文件(推荐)。pandas:强大的数据分析工具,支持读取和写入E
- 如何写一份合格的大数据简历(附简历模板)教程
itLeeyw573
老板必点的高分简历sqliteoraclemysqlsqlzookeeperkafkabigdata
一、简历的重要性简历是求职者给招聘者的第一印象,一份合格的简历能够快速让招聘者了解你的基本信息、工作经历、技能特长等,从而决定是否给予你面试机会。它是开启理想工作大门的钥匙,所以一定要重视起来。【编辑/下载】:大数据开发简历范文二、简历结构基本信息:包含姓名、性别、联系方式(电话、邮箱)、求职意向。姓名要突出显示,联系方式务必准确无误,求职意向明确且具体,比如“Java开发工程师”,让招聘者一眼就
- MongoDB 大俗大雅,上来问分片真三俗 -- 4 分什么分
Austindatabases
mongodb数据库
开头还是介绍一下群,如果感兴趣PolarDB,MongoDB,MySQL,PostgreSQL,Redis,OceanBase,SqlServer等有问题,有需求都可以加群群内有各大数据库行业大咖,可以解决你的问题。加群请联系liuaustin3,(共2710人左右1+2+3+4+5+6+7+8+9)(123456群均已爆满,7群400+,开8群9群)这是MongoDB宣传周的第五篇,这周真漫长,
- 大数据技术在数据安全治理中的应用
罗思付之技术屋
综合技术探讨及方案专栏大数据
摘要面对新形势下的数据安全治理挑战,顺应数据安全领域的技术发展趋势,针对大型国企在数据安全治理实际应用中突出的关键权限人员识别问题,提出了一种基于图算法的关键权限人员识别技术。该技术可以发现系统中潜在的权限影响因素,并可从多个角度衡量不同含义的权重影响力,识别结果可解释性强。针对数据安全治理中的用户与实体行为异常检测问题,提出一种基于生成对抗网络的用户与实体行为异常检测方法,实验结果表明,所提方法
- 阿里巴巴大数据系统体系架构
大连赵哥
大数据架构
数据应用层:这是最顶层,面向不同的用户群体提供服务,包括对内(公司内部使用)、对平台(平台用户)、对商家(商家使用)、对公众(普通消费者)。数据服务与基础工具层:这一层提供了一些基础服务和工具,例如:OneService:可能是一种服务或工具,用于统一数据服务。TDDL+MySQL:TDDL是淘宝分布式数据层的缩写,与MySQL结合使用,提供数据库服务。HBase:一个分布式列存储系统,适合于存储
- python 分布式集群_Python搭建Spark分布式集群环境
小国阁下
python分布式集群
前言ApacheSpark是一个新兴的大数据处理通用引擎,提供了分布式的内存抽象。Spark最大的特点就是快,可比HadoopMapReduce的处理速度快100倍。本文没有使用一台电脑上构建多个虚拟机的方法来模拟集群,而是使用三台电脑来搭建一个小型分布式集群环境安装。本教程采用Spark2.0以上版本(比如Spark2.0.2、Spark2.1.0等)搭建集群,同样适用于搭建Spark1.6.2
- 【硬刚大数据】2021年从零到大数据专家之Hbase八股文
王知无(import_bigdata)
欢迎关注博客主页:https://blog.csdn.net/u013411339欢迎点赞、收藏、留言,欢迎留言交流!本文由【王知无】原创,首发于CSDN博客!本文首发CSDN论坛,未经过官方和本人允许,严禁转载!本文是对《【硬刚大数据之学习路线篇】2021年从零到大数据专家的学习指南(全面升级版)》的面试部分补充。硬刚大数据系列文章链接:2021年从零到大数据专家的学习指南(全面升级版)
- 史上最强!Spring Boot 3.3 高效批量插入万级数据的多种方案
m0_74825074
面试学习路线阿里巴巴springboot后端java
SpringBoot3.3多种方式实现高效批量插入万级数据,史上最强!在大数据处理场景下,如何高效地将大量数据插入数据库是一个重要课题。本文基于SpringBoot3.3及MyBatis-Plus,介绍几种高效的批量插入数据的方法,包括:使用JDBC批处理使用自定义SQL批处理单条插入(for循环)拼接SQL语句插入MyBatis-Plus的saveBatch方法循环插入+开启批处理模式每种方式都
- 多租户架构未提供足够的租户安全培训和教育
图幻未来
网络安全
多租户架构下租户安全培训与教育的需求分析与解决方案引言随着云计算和大数据技术的飞速发展,多租户架构已成为企业数字化转型的重要基石。多租户架构允许一个应用程序实例为多个租户提供服务,从而降低了企业的运营成本。然而,这种架构也带来了一系列的安全挑战。为了解决这些问题,企业需要加强对租户的安全培训和教育,确保租户了解如何在使用多租户架构时保护自己的数据和应用程序。本文将探讨多租户架构下的租户安全培训和教
- 一文了解大数据概论
程序员
一.大数据概论1.1大数据概念大数据(bigdata):指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。主要解决,海量数据的存储和海量数据的分析计算问题。按顺序给出数据存储单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。1Byte=8bit
- 中国BI步入增长大周期,腾讯云ChatBI加速AI+BI融合
大数据在线
AI云静思园人工智能腾讯云大数据ChatBIAI+BI
过去十年,大数据技术的快速发展,让数据消费前进一大步,数据价值得到一定程度的挖掘与释放,真正开启了“用数”的大时代。但数据分析繁杂的技术栈、复杂的处理过程以及程式化的交互方式,让“数据消费”的门槛始终降不下来,一定程度制约着企业迈向“用好数”的新阶段。如今,随着大模型和生成式AI的迅猛发展,数据消费正迎来一场巨大变革。大模型与数据分析天然的融合属性,使得商业智能(以下简称:BI)迎来全面重塑,BI
- 乐学智伴:基于人工智能与大数据的学生个性化学习辅助平台
IT源码大师
人工智能大数据学习
详细描述:1.引言:教育科技的时代背景在信息化和数字化的浪潮下,教育领域正经历着深刻的变革。传统的教学模式以教师为中心,难以满足学生个性化学习的需求。随着人工智能、大数据和云计算等技术的快速发展,教育科技(EdTech)为个性化学习提供了全新的解决方案。通过智能化工具和数据分析,学生可以根据自身的学习特点和进度,制定个性化的学习计划,从而提高学习效率和效果。“乐学智伴”是一款基于人工智能与大数据技
- Hive存储系统全面测试报告
蚂蚁质量
软件测试测试用例功能测试
引言在大数据时代,数据存储和处理技术的重要性日益凸显。ApacheHive作为一个基于Hadoop的数据仓库工具,因其能够提供类SQL查询功能(HiveQL)而广受欢迎。Hive的设计初衷是为了简化大数据集的查询和管理,它允许用户通过简单的SQL语句来操作存储在Hadoop分布式文件系统(HDFS)上的大规模数据集。然而,随着数据量的激增和业务需求的多样化,Hive存储系统的功能、性能和安全性面临
- 企业数字化转型AI能力中台(总体架构、系统功能)建设方案
公众号:优享智库
数字化转型数据治理主数据数据仓库人工智能架构
**企业数字化转型AI能力中台建设方案**一、建设背景与目标随着大数据、云计算、人工智能等技术的快速发展,企业正面临着数字化转型的重要机遇。为了提升企业的智能化水平,加快业务创新,建设AI能力中台成为企业的迫切需求。本方案旨在为企业打造一套功能完善的AI能力中台,实现数据采集与整合、算法模型管理、智能分析与可视化等核心功能,推动企业在各个业务领域实现智能化升级和创新。二、总体架构设计AI能力中台采
- 数据挖掘的常用算法
北柠陌寒0207
笔记
在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其
- 大数据生态的Apache RocketMQ5.0
Apache RocketMQ
java开发语言
本文作者:李伟-ApacheRocketMQCommitter,RocketMQPython客户端项目Owner,ApacheDorisContributor,腾讯云消息队列资深开发工程师,著有《RocketMQ分布式消息中间件(核心原理与最佳实践)》。一、RocketMqueue101RocketMQ拥有诸多出色的特性:比如多副本机制,RocketMQ支持存储层的多副本Dledger,它是基于R
- ZooKeeper数据模型和节点类型
代码指四方
zookeeper分布式云原生大数据
ZooKeeper数据模型和节点类型ZooKeeper是一个开源的分布式协调服务,用于管理和协调分布式系统中的大数据。在ZooKeeper中,数据被组织成一个层次化的命名空间(Namespace),类似于一个标准的文件系统。每个节点(Node)都可以存储数据,并且可以设置监视器(Watcher)来监听节点的变化。ZooKeeper数据模型是基于树形结构的,每个节点都可以包含数据和子节点。数据存储在
- DeepSeek:突破传统的AI算法与下载排行分析
smart_ljh
行业搜索人工智能AI
DeepSeek的AI算法突破DeepSeek相较于OpenAI以及其它平台的性能对比DeepSeek的下载排行分析(截止2025/1/28AI人工智能相关DeepSeek甚至一度被推上了搜索)未来发展趋势总结在人工智能技术飞速发展的当下,搜索引擎市场也迎来了新的变革。DeepSeek,作为一款基于深度学习技术和大数据算法的搜索引擎,以其独特的优势在国内外市场上引起了广泛关注。下面介绍一下针对De
- 2000-2021年上市公司数字化转型数据(MD&A报告词频、文本统计)
m0_71334485
数据#上市公司上市公司数字化转型数字化转型上市公司
2000-2021年上市公司数字化转型数据(MD&A报告词频、文本统计)1、时间:2000-2021年2、来源:上市公司NB3、范围:上市公司4、指标:包括人工智能技术、大数据技术、云计算技术、区块链技术、数字技术运用和数字技术应用、互联网商业模式、智能制造、现代信息系统等9个维度175个词频类别、股票代码、股票简称、年报标题、年份、MD&A文本-文本总长度、MD&A文本仅中英文-文本总长度、人工
- 【高级篇】第7章 Elasticsearch 索引生命周期管理(ILM)
JAVA和人工智能
elasticsearch大数据搜索引擎
引言在大数据时代,有效地管理数据的生命周期是确保系统性能、成本控制和合规性的关键。Elasticsearch的索引生命周期管理(ILM)为此提供了强大的解决方案。本章将深入探讨ILM的概念、策略设计与实施、以及监控与维护的实践,帮助读者掌握这一重要领域的精髓。7.1ILM概念:数据管理的智慧策略索引生命周期管理(ILM)是Elasticsearch中的一项高级功能,它代表了一种前瞻性的数据管理哲学
- Elasticsearch 索引生命周期管理:优化大数据存储
静谧星光c
大数据elasticsearchjenkins
Elasticsearch索引生命周期管理:优化大数据存储在处理大规模数据时,存储和检索效率是至关重要的。Elasticsearch是一款功能强大的搜索和分析引擎,它的索引生命周期管理功能可以帮助我们优化大数据的存储和查询性能。本文将介绍Elasticsearch索引生命周期管理的概念,并提供相应的源代码示例。索引生命周期管理(IndexLifecycleManagement,简称ILM)是Ela
- 运维面试常问的100道题(大数据统计)
m0_67403143
面试学习路线阿里巴巴运维面试大数据
一、基础知识类1、请解释什么是运维?运维是指对企业的IT系统进行运行维护,包括硬件设备、软件系统、网络等的监控、管理、优化和故障处理,以确保系统的稳定、高效运行,满足业务需求。2、简述运维的主要职责有哪些?服务器的安装、配置、维护和监控。网络设备的管理和维护。数据库的管理和维护。应用系统的部署、升级和维护。故障处理和应急响应。性能优化和容量规划。安全管理和漏洞修复。3、什么是服务器?有哪些类型?服
- 基于centos6.5安装ElasticSearch
小码农叔叔
ElasticSearchlinux与容器实战ElasticSearchES安装
前面我们讲述了solr的安装搭建过程,今天讲讲ElasticSearch,ElasticSearch是另一款作为分词和搜索的服务器,相比solr,ElasticSearch在做大数据方面更有优势,因为其天然支持分布式,而且其强大的分词技术使得其在众多需要处理大数据量的业务中低位逐渐拔高,像大数据中做日志的提取和分析,使用ElasticSearch很适合,实际工作中,ElasticSearch主要是
- 大数据开发的底层逻辑是什么?
瑰茵
大数据
大数据开发的底层逻辑主要围绕数据的生命周期进行,包括数据的采集、存储、处理、分析和可视化等环节。以下是大数据开发的一些关键底层逻辑:数据采集:目的:从不同的数据源(如日志文件、数据库、传感器等)收集数据。方法:使用数据采集工具(如ApacheFlume、ApacheKafka、ApacheSqoop)来捕获和传输数据。数据存储:目的:将收集到的数据存储在可靠且可扩展的存储系统中。方法:使用分布式文
- AI智能获客工具的意义是什么
雪叶雨林
AI行业资讯人工智能
在当今竞争激烈的市场环境中,企业需要高效、精准的获客策略来维持增长和竞争力。AI智能获客工具的出现,为企业提供了一种全新的解决方案,通过自动化和智能化手段提高获客效率和质量。一、AI智能获客工具的核心价值1.1提高获客效率AI智能获客工具通过自动化流程,如自动筛选潜在客户、自动发送营销信息等,大幅减少了人力投入和时间成本,从而提高了获客效率。1.2精准定位潜在客户利用机器学习和大数据分析技术,AI
- 大数据和智能数据应用架构系列教程之:大数据与人工智能
AI天才研究院
AI实战大数据AI人工智能Python实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.背景介绍概述“大数据”是指海量、高维、多样化的数据集合。随着人类对数据处理和管理的需求越来越复杂,越来越依赖机器学习、人工智能等新兴技术。在过去的一段时间里,越来越多的人开始关注到“大数据”这一颗龙头。如今,“大数据”已经成为一个新的名词,它既包含了大量的数据,也带来了巨大的价值。因此,研究、开发、应用“大数据”技术也逐渐成为各行各业的专业人才需求。在这个快速发展的
- Scala在大数据和分布式计算领域的应用与优势
夜色呦
scala大数据开发语言
大数据和分布式计算是当今信息技术领域的热点话题,它们处理着海量数据并需要高效的计算能力。Scala,作为一种多范式编程语言,因其在并发编程和函数式编程方面的优势,成为大数据和分布式计算领域的理想选择。本文将探讨Scala在这些领域的应用,并分析其带来的优势。1.大数据和分布式计算的挑战在大数据时代,数据量呈指数级增长,传统的数据处理方法已经无法满足需求。分布式计算提供了一种解决方案,通过在多个物理
- 图文详解 MapReduce on YARN
Shockang
大数据技术体系大数据mapreduceyarn
前言本文隶属于专栏《1000个问题搞定大数据技术体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见1000个问题搞定大数据技术体系正文权威版本——《Hadoop权威指南第3版》1.作业提交MRrunJob从RM获取新的作业ID作业客户端检査作业的输出说明,计算输入分片并将作业资源(包括作业JAR、配置和分片信息)复制到HDFS。通过调用R
- 360大数据面试题及参考答案
大模型大数据攻城狮
大数据数据治理jvm内存CAS数据开发指标开发数据分析
数据清理有哪些方法?数据清理是指发现并纠正数据文件中可识别的错误,包括检查数据一致性,处理无效值和缺失值等。常见的数据清理方法有以下几种:去重处理:数据中可能存在重复的记录,这不仅会占用存储空间,还可能影响分析结果。通过对比每条记录的关键属性,若所有关键属性值都相同,则判定为重复记录,可保留其中一条,删除其余重复项。例如在客户信息表中,若有两条记录客户姓名、联系方式、地址等关键信息都一样,就可进行
- 大数据小白系列——YARN(1)
weixin_44386638
大数据大数据人工智能机器学习数据挖掘数据分析
这是大数据小白系列,YARN的第一篇,准确的说是介绍YARN的“前身”,即MapReduce第一版(下称MRv1)中的资源管理系统。之前准备忽略这部分的内容,毕竟MRv1已经过时了,但为方便后续介绍YARN,这里还是(并不深入地)讲一讲。Q:为什么需要一个资源管理系统?A:在一个具有成百上千节点的集群上(这很常见),资源管理十分重要,一个好的资源管理系统可以充分发挥各节点的能力,避免一些节点忙碌,
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分