day52 | 300.最长递增子序列、最长连续递增序列、最长重复子数组

目录:

解题及思路学习

300.最长递增子序列

https://leetcode.cn/problems/longest-increasing-subsequence/

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4

思考:动态规划可以做。dp[i] 表示下表为i时候最长递增子序列。

随想录:

  1. dp[i]的定义

    本题中,正确定义dp数组的含义十分重要。

    dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

  2. 状态转移方程

    位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。

    所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

    注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值

  3. dp[i]的初始化

    每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

  4. 确定遍历顺序

    dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历。

    j其实就是遍历0到i-1,那么是从前到后,还是从后到前遍历都无所谓,只要吧 0 到 i-1 的元素都遍历了就行了。 所以默认习惯 从前向后遍历。

  5. 举例推导dp数组

输入:[0,1,0,3,2],dp数组的变化如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EfQFGXoM-1689466267263)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/fa21ecf8-e450-4243-a08c-57964c50e735/Untitled.png)]

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        if (nums.size() <= 1) return nums.size();
        vector<int> dp(nums.size(), 1);
        int result = 0;
        for (int i = 1; i < nums.size(); i++) {
            for (int j = 0; j < i; j++) {
                if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
            }
            if (dp[i] > result) result = dp[i]; // 取长的子序列
        }
        return result;
    }
};
  • 时间复杂度: O(n^2)
  • 空间复杂度: O(n)

本题最关键的是要想到dp[i]由哪些状态可以推出来,并取最大值,那么很自然就能想到递推公式:dp[i] = max(dp[i], dp[j] + 1);

674. 最长连续递增序列

https://leetcode.cn/problems/longest-continuous-increasing-subsequence/

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 rl < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

输入:nums = [1,3,5,4,7]
输出:3

思考:和上一题相比,主要区别是要求连续递增。所以对于一个数据,判断是否连续递增,只能从前一个数去判断。

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        if (nums.size() <= 1) return nums.size();
        vector<int> dp(nums.size(), 1);
        int result = 0;
        for (int i = 1; i < nums.size(); i++) {
            if (nums[i] > nums[i - 1]) dp[i] = dp[i - 1] + 1;
            if (dp[i] > result) result = dp[i];
        }
        return result;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

贪心

这道题目也可以用贪心来做,也就是遇到nums[i] > nums[i - 1]的情况,count就++,否则count为1,记录count的最大值就可以了。

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        int result = 1; // 连续子序列最少也是1
        int count = 1;
        for (int i = 1; i < nums.size(); i++) {
            if (nums[i] > nums[i - 1]) { // 连续记录
                count++;
            } else { // 不连续,count从头开始
                count = 1;
            }
            if (count > result) result = count;
        }
        return result;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

718. 最长重复子数组

https://leetcode.cn/problems/maximum-length-of-repeated-subarray/

给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 。

示例 1:

输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1] 。

思考:假如设dp[i] 表示以下标i结尾的最大公共子数组dp[i]。

随想录:本题其实是动规解决的经典题目,我们只要想到 用二维数组可以记录两个字符串的所有比较情况,这样就比较好推 递推公式了。 动规五部曲分析如下:

1、含义:dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。 (特别注意: “以下标i - 1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串 )

2、递推公式:

根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。

即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;

根据递推公式可以看出,遍历i 和 j 要从1开始!

3、初始化:

根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!

但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;

所以dp[i][0] 和dp[0][j]初始化为0。

4、遍历顺序

两层for循环,顺序可颠倒。

同时题目要求长度最长的子数组的长度。所以在遍历的时候顺便把dp[i][j]的最大值记录下来。

5、举例推导dp数组

拿示例1中,A: [1,2,3,2,1],B: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Tl2NiOdV-1689466267266)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/c848c468-8638-4682-a2b0-57f22a5203da/Untitled.png)]

/ 版本一
class Solution {
public:
    int findLength(vector<int>& nums1, vector<int>& nums2) {
        vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
        int result = 0;
        for (int i = 1; i <= nums1.size(); i++) {
            for (int j = 1; j <= nums2.size(); j++) {
                if (nums1[i - 1] == nums2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                }
                if (dp[i][j] > result) result = dp[i][j];
            }
        }
        return result;
    }
};
  • 时间复杂度:O(n × m),n 为A长度,m为B长度
  • 空间复杂度:O(n × m)

滚动数组

我们可以看出dp[i][j]都是由dp[i - 1][j - 1]推出。那么压缩为一维数组,也就是dp[j]都是由dp[j - 1]推出。

此时遍历B数组的时候,就要从后向前遍历,这样避免重复覆盖

// 版本二
class Solution {
public:
    int findLength(vector<int>& A, vector<int>& B) {
        vector<int> dp(vector<int>(B.size() + 1, 0));
        int result = 0;
        for (int i = 1; i <= A.size(); i++) {
            for (int j = B.size(); j > 0; j--) {
                if (A[i - 1] == B[j - 1]) {
                    dp[j] = dp[j - 1] + 1;
                } else dp[j] = 0; // 注意这里不相等的时候要有赋0的操作
                if (dp[j] > result) result = dp[j];
            }
        }
        return result;
    }
};
  • 时间复杂度: O ( n × m ) O(n × m) O(n×m),n 为A长度,m为B长度
  • 空间复杂度: O ( m ) O(m) O(m)

知识点记录

知识点

动态规划求最长子序列

个人反思

你可能感兴趣的:(LeetCode,刷题,C++,算法,动态规划,数据结构,c++,leetcode)