安装cv2
pycharm开发环境。无法单独安装cv2,直接安装opencv-python即可。
报错:
cv2.error: OpenCV(4.7.0) D:\a\opencv-python\opencv-python\opencv\modules\imgproc\src\shapedescr.cpp:315: error: (-215:Assertion failed) npoints >= 0 && (depth == CV_32F || depth == CV_32S) in function 'cv::contourArea'
方法一,识别两点的坐标
import numpy as np
import cv2 as cv
frameWidth = 640
frameHeight = 480
cap = cv.VideoCapture('.\VID20230519045724.mp4')
size = (frameWidth, frameHeight)
fgbg = cv.createBackgroundSubtractorMOG2()
feature_params = dict(maxCorners=1,qualityLevel=.6,minDistance=25,blockSize=9)
result = cv.VideoWriter('output.avi',
cv.VideoWriter_fourcc(*'MJPG'),
10, size)
while True:
ret, oframe = cap.read()
if oframe is None:
break
oframe = cv.resize(oframe, (frameWidth, frameHeight))
mask = fgbg.apply(oframe)
frame = cv.morphologyEx(mask,cv.MORPH_OPEN,np.ones((5,5),np.uint8))
ball = cv.goodFeaturesToTrack(frame,**feature_params)
if ball is not None:
x,y = ball[0][0]
cv.circle(oframe,(int(x),int(y)),8,(180,180,0),2)
print("(x,y)=(",x,",",y,")")
cv.imshow("Track", oframe)
result.write(oframe)
key = cv.waitKey(30)
if key == ord('q') or key == 27:
break
result.release()
效果
方法二:
ROI,绘制轨迹
import cv2 as cv
import numpy as np
cap = cv.VideoCapture('720p.mp4')
#cap = cv.VideoCapture('object_tracking_example.mp4')
# 读取第一帧
ret,frame = cap.read()
cv.namedWindow("Demo", cv.WINDOW_AUTOSIZE)
# 选择ROI区域
x, y, w, h = cv.selectROI("Demo", frame, True, False)
track_window = (x, y, w, h)
print("selectROI:x=",x, "y=",y, "w=",w, "h=",h)
# 获取ROI直方图
roi = frame[y:y+h, x:x+w]
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV)
#mask = cv.inRange(hsv_roi, (26, 43, 46), (34, 255, 255))
mask = cv.inRange(hsv_roi, (0, 0, 0), (255, 255, 255))
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX)
tracking_path = []
# 设置迭代的终止标准,最多十次迭代
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )
while True:
ret, frame = cap.read()
if ret is False:
break;
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1)
# 搜索更新roi区域
ret, track_box = cv.CamShift(dst, track_window, term_crit)
#print(type(ret)," CamShift=",ret)
# 可变角度的矩形框
pts = cv.boxPoints(ret)
pts = np.int0(pts)
cv.polylines(frame, [pts], True, (0, 255, 0), 2)
# 更新窗口
track_window = track_box
#print(track_box)
# 椭圆中心
pt = np.int32(ret[0])
if pt[0] > 0 and pt[1] > 0:
tracking_path.append(pt)
print(pt[0],",",pt[1])
# 绘制跟踪对象位置窗口与对象运行轨迹
#cv.ellipse(frame, ret, (0, 0, 255), 3, 8)
for i in range(1, len(tracking_path)):
cv.line(frame, (tracking_path[i - 1][0], tracking_path[i - 1][1]),
(tracking_path[i][0], tracking_path[i][1]), (0, 255, 0), 2, 6, 0)
# 绘制窗口CAM,目标椭圆图
cv.ellipse(frame, ret, (0, 0, 255), 3, 8)
cv.imshow('Demo',frame)
k = cv.waitKey(50) & 0xff
if k == 27:
break
else:
cv.imwrite(chr(k)+".jpg",frame)
cv.destroyAllWindows()
cap.release()
效果
参考:
OpenCV视频分析-Meanshift、Camshift&运动轨迹绘制 - 知乎
GitHub - woonyee28/Table-Tennis-Ball-Tracker: This project aims to track the movement of a table tennis ball in a video using OpenCV. The process involves filtering out the ball, generating a foreground mask, and then adding circles to the original frames to visualize the ball's movement.