Sparkstreaming从Kafka中读取数据,数据和偏移量写入到Mysql中(开启事务)

从Kafka中读取数据,完成聚合类的操作,
最后将【偏移量】和【计算好的聚合结果】同时写入到MySQL中
MySQL 是一个【支持事务】的关系型数据库,使用事务可以保证【计算好的聚合结果】和【偏移量】同时写入成功

1、MySql中建表

-- kafka中读取数据,写入到mysql中所创建的表
-- 1、写入的数据
CREATE TABLE word_counts(
word VARCHAR(255) NOT NULL PRIMARY KEY,
counts INT
);
-- 测试
insert into word_counts (word,counts) values('a',10) on duplicate key update counts =  counts  + 10
insert into word_counts (word,counts) values('a',5) on duplicate key update counts =  counts  + 5

-- 2、写入的偏移量
CREATE TABLE word_offsets(
app_gid VARCHAR(255) NOT NULL,
topic_partition VARCHAR(255) NOT NULL,
offset int,
PRIMARY KEY (app_gid,topic_partition) -- 联合主键
);
-- 测试
insert into word_offsets (app_gid,topic_partition,offset)  values('wc_g001','t1_0',10) on duplicate key update offset =  10
insert into word_offsets (app_gid,topic_partition,offset)  values('wc_g001','t1_0',12) on duplicate key update offset =  12

2、scala代码实现

import java.sql.{Connection, DriverManager, PreparedStatement}

import com.mysql.jdbc.Driver
import com.sparkstreaming.utils._00_OffsetUtils
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, HasOffsetRanges, KafkaUtils, LocationStrategies, OffsetRange}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object _04_SparkStreaming_KafkaToMySQL {
  def main(args: Array[String]): Unit = {
    //创建StreamingContext对象
    val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[*]")
    val sc: SparkContext = new SparkContext(conf)
    sc.setLogLevel("warn")
    val ssc: StreamingContext = new StreamingContext(sc,Seconds(5))

    //kafka的配置参数
    //kafkaParams
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "centos01:9092,centos02:9092,centos03:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> "g0018",
      "auto.offset.reset" -> "earliest" ,//"latest"
      "enable.auto.commit" -> (false: java.lang.Boolean)
    )
    val topics = Array("producer_01")
    //要先在mysql中查询偏移量,如果有就把偏移量进行提交
    val map = _00_OffsetUtils.queryHistoryOffsetFromMySQL(this.getClass.getSimpleName, "g0018")

    val dStream: DStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(
      ssc,
      LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe[String, String](topics, kafkaParams,map)
    )

    dStream.foreachRDD(rdd => {

      if(!rdd.isEmpty()){
        val reduced: RDD[(String, Int)] = rdd.map(_.value()).flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _)
        val res: Array[(String, Int)] = reduced.collect()
        var conn: Connection = null
        var ps: PreparedStatement = null
        //注册驱动
        try {
          classOf[Driver]
          //获得连接
          conn = DriverManager.getConnection(
            "jdbc:mysql://localhost:3306/sql_01?characterEncoding=utf8",
            "root",
            "123456")
          //开启事务
          conn.setAutoCommit(false)
          ps = conn.prepareStatement("insert into word_counts (word,counts) values(?,?) " +
            "on duplicate key update counts =  counts + ?")

          for (elem <- res) {
            val word: String = elem._1
            val cnt: Int = elem._2
            ps.setString(1,word)
            ps.setInt(2,cnt)
            ps.setInt(3,cnt)
            ps.execute()
          }
          //把偏移量信息写入到mysql中
          ps = conn.prepareStatement("insert into word_offsets (app_gid,topic_partition,offset) " +
                    "values(?,?,?) on duplicate key update offset =  ?")

          val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
          println("-----------------------------------------------")
          for (elem <- offsetRanges) {
            val partition = elem.partition
            val topic = elem.topic
            val untilOffset: Int = elem.untilOffset.toInt

            val app_gid = this.getClass.getSimpleName + "_" + "g0018"
            val topic_partition = topic + "_" + partition

            ps.setString(1,app_gid)
            ps.setString(2,topic_partition)
            ps.setInt(3,untilOffset)
            ps.setInt(4,untilOffset)
            println("topic: " + elem.topic + ", partition: " + elem.partition +
            ", untilOffset: " + elem.untilOffset)
            ps.execute()
          }
          //提交事务
          conn.commit()
        } catch {
          case e:Exception =>
            //回滚事务
            conn.rollback()
            throw  e
            ssc.stop(true)
        } finally {
          if (ps != null){
            ps.close()
          }
          if(conn != null){
            conn.close()
          }
        }
      }
    })
    ssc.start()
    ssc.awaitTermination()
  }
}

3、从mysql读取偏移量的工具类

import java.sql.{Connection, DriverManager}

import org.apache.kafka.common.TopicPartition

import scala.collection.mutable

object _00_OffsetUtils {
  //从mysql中查询数据
  //offsets: ju.Map[TopicPartition, jl.Long])
  def queryHistoryOffsetFromMySQL(appName: String, groupId: String): Map[TopicPartition, Long] = {

    val historyOffset: mutable.HashMap[TopicPartition, Long] = new mutable.HashMap[TopicPartition, Long]()

    val conn: Connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/sql_01?characterEncoding=utf8",
      "root",
      "123456")

   val  ps2 = conn.prepareStatement("select  topic_partition,offset from word_offsets where " +
      "app_gid = ?")

    ps2.setString(1,appName + "_" + groupId)
    val resultSet = ps2.executeQuery()
    while (resultSet.next()){
      val topicPartition = resultSet.getString(1)
      val offset: Long = resultSet.getInt(2).toLong
      val array: Array[String] = topicPartition.split("_")
      historyOffset.put(new TopicPartition(array(0)+"_" + array(1),array(2).toInt),offset)
    }
    historyOffset.toMap
  }
}

你可能感兴趣的:(#,spark)