【力扣】53. 最大子数组和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组 是数组中的一个连续部分。

示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:
输入:nums = [1]
输出:1

示例 3:
输入:nums = [5,4,-1,7,8]
输出:23

提示
1 <= nums.length <= 1 0 5 10^5 105
- 1 0 4 10^4 104 <= nums[i] <= 1 0 4 10^4 104

进阶:如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。

题解

// https://leetcode.cn/problems/maximum-subarray/

import org.junit.jupiter.api.Test;
import java.util.Arrays;

import static org.junit.jupiter.api.Assertions.assertEquals;

public class Solution {
    public int maxSubArray(int[] nums) {
        //初始化
        int sum = nums[0];
        int ans = nums[0];

        //遍历整个数组
        for (int i = 1; i < nums.length; i++) {
            //更新sum
            sum = Math.max(sum + nums[i], nums[i]);
            //比较之前和和最大值
            ans = Math.max(ans, sum);
        }

        return ans;
    }

    //贪心
    public int maxSubArray2(int[] nums) {
        //初始化
        int ans = nums[0];
        int sum = 0;

        for(int num: nums) {
            //sum:之前和 如果大于,则更新为当前值num+sum
            if(sum > 0) {
                sum += num;
            }
            //sum:之前和 如果小于,则更新为当前值num
            else {
                sum = num;
            }
            //比较之前和和最大值
            ans = Math.max(ans, sum);
        }
        return ans;
    }


    //动态规划
    public int maxSubArray3(int[] nums) {
        int n = nums.length;

        for (int i = 1; i < n; i++) {
            if(nums[i-1]>0){
                nums[i] += nums[i-1];
            }
        }
        return Arrays.stream(nums).max().getAsInt();
    }

    @Test
    public void test() {
        Solution s = new Solution();
        assertEquals(6, s.maxSubArray(new int[]{-2, 1, -3, 4, -1, 2, 1, -5, 4}));
        assertEquals(1, s.maxSubArray2(new int[]{1}));
        assertEquals(23, s.maxSubArray3(new int[]{5, 4, -1, 7, 8}));
    }
}

分治:

import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertEquals;

class Solution2 {
    public int maxSubArray(int[] nums) {
        return maxSubArrayPart(nums, 0, nums.length - 1);
    }

    private int maxSubArrayPart(int[] nums, int left, int right) {
        if (left == right) {
            return nums[left];
        }
        int mid = (left + right) / 2;
        return Math.max(
                maxSubArrayPart(nums, left, mid),
                Math.max(
                        maxSubArrayPart(nums, mid + 1, right),
                        maxSubArrayAll(nums, left, mid, right)
                )
        );
    }

    //左右两边合起来求解
    private int maxSubArrayAll(int[] nums, int left, int mid, int right) {
        int leftSum = Integer.MIN_VALUE;
        int sum = 0;
        for (int i = mid; i >= left; i--) {
            sum += nums[i];
            if (sum > leftSum) {
                leftSum = sum;
            }
        }
        sum = 0;
        int rightSum = Integer.MIN_VALUE;
        for (int i = mid + 1; i <= right; i++) {
            sum += nums[i];
            if (sum > rightSum) {
                rightSum = sum;
            }
        }
        return leftSum + rightSum;
    }

    @Test
    public void test() {
        Solution2 s = new Solution2();
        assertEquals(6, s.maxSubArray(new int[]{-2, 1, -3, 4, -1, 2, 1, -5, 4}));
        assertEquals(1, s.maxSubArray(new int[]{1}));
        assertEquals(23, s.maxSubArray(new int[]{5, 4, -1, 7, 8}));
    }
}

你可能感兴趣的:(Java相关,#,力扣及OJ,leetcode,算法)