华为诺亚方舟实验室常见算法题题目二

一、快速排序

给你一个整数数组 nums,请你将该数组升序排列。

思路和算法

image.png

代码

class Solution {
    int partition(vector& nums, int l, int r) {
        int pivot = nums[r];
        int i = l - 1;
        for (int j = l; j <= r - 1; ++j) {
            if (nums[j] <= pivot) {
                i = i + 1;
                swap(nums[i], nums[j]);
            }
        }
        swap(nums[i + 1], nums[r]);
        return i + 1;
    }
    int randomized_partition(vector& nums, int l, int r) {
        int i = rand() % (r - l + 1) + l; // 随机选一个作为我们的主元
        swap(nums[r], nums[i]);
        return partition(nums, l, r);
    }
    void randomized_quicksort(vector& nums, int l, int r) {
        if (l < r) {
            int pos = randomized_partition(nums, l, r);
            randomized_quicksort(nums, l, pos - 1);
            randomized_quicksort(nums, pos + 1, r);
        }
    }
public:
    vector sortArray(vector& nums) {
        srand((unsigned)time(NULL));
        randomized_quicksort(nums, 0, (int)nums.size() - 1);
        return nums;
    }
};
class Solution:
    def randomized_partition(self, nums, l, r):
        pivot = random.randint(l, r)
        nums[pivot], nums[r] = nums[r], nums[pivot]
        i = l - 1
        for j in range(l, r):
            if nums[j] < nums[r]:
                i += 1
                nums[j], nums[i] = nums[i], nums[j]
        i += 1
        nums[i], nums[r] = nums[r], nums[i]
        return i

    def randomized_quicksort(self, nums, l, r):
        if r - l <= 0:
            return
        mid = self.randomized_partition(nums, l, r)
        self.randomized_quicksort(nums, l, mid - 1)
        self.randomized_quicksort(nums, mid + 1, r)

    def sortArray(self, nums: List[int]) -> List[int]:
        self.randomized_quicksort(nums, 0, len(nums) - 1)
        return nums

二、二分

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

二分查找

image.png
class Solution {
public:
    int search(vector& nums, int target) {
        int low = 0, high = nums.size() - 1;
        while(low <= high){
            int mid = (high - low) / 2 + low;
            int num = nums[mid];
            if (num == target) {
                return mid;
            } else if (num > target) {
                high = mid - 1;
            } else {
                low = mid + 1;
            }
        }
        return -1;
    }
};
class Solution:
    def search(self, nums: List[int], target: int) -> int:
        low, high = 0, len(nums) - 1
        while low <= high:
            mid = (high - low) // 2 + low
            num = nums[mid]
            if num == target:
                return mid
            elif num > target:
                high = mid - 1
            else:
                low = mid + 1
        return -1

三、第k大数

给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。

请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

方法一:基于快速排序的选择方法

image.png
class Solution {
public:
    int quickSelect(vector& a, int l, int r, int index) {
        int q = randomPartition(a, l, r);
        if (q == index) {
            return a[q];
        } else {
            return q < index ? quickSelect(a, q + 1, r, index) : quickSelect(a, l, q - 1, index);
        }
    }

    inline int randomPartition(vector& a, int l, int r) {
        int i = rand() % (r - l + 1) + l;
        swap(a[i], a[r]);
        return partition(a, l, r);
    }

    inline int partition(vector& a, int l, int r) {
        int x = a[r], i = l - 1;
        for (int j = l; j < r; ++j) {
            if (a[j] <= x) {
                swap(a[++i], a[j]);
            }
        }
        swap(a[i + 1], a[r]);
        return i + 1;
    }

    int findKthLargest(vector& nums, int k) {
        srand(time(0));
        return quickSelect(nums, 0, nums.size() - 1, nums.size() - k);
    }
};

方法二:基于堆排序的选择方法

我们也可以使用堆排序来解决这个问题——建立一个大根堆,做 k - 1k−1 次删除操作后堆顶元素就是我们要找的答案。在很多语言中,都有优先队列或者堆的的容器可以直接使用,但是在面试中,面试官更倾向于让更面试者自己实现一个堆。所以建议读者掌握这里大根堆的实现方法,在这道题中尤其要搞懂「建堆」、「调整」和「删除」的过程。

class Solution {
public:
    void maxHeapify(vector& a, int i, int heapSize) {
        int l = i * 2 + 1, r = i * 2 + 2, largest = i;
        if (l < heapSize && a[l] > a[largest]) {
            largest = l;
        } 
        if (r < heapSize && a[r] > a[largest]) {
            largest = r;
        }
        if (largest != i) {
            swap(a[i], a[largest]);
            maxHeapify(a, largest, heapSize);
        }
    }

    void buildMaxHeap(vector& a, int heapSize) {
        for (int i = heapSize / 2; i >= 0; --i) {
            maxHeapify(a, i, heapSize);
        } 
    }

    int findKthLargest(vector& nums, int k) {
        int heapSize = nums.size();
        buildMaxHeap(nums, heapSize);
        for (int i = nums.size() - 1; i >= nums.size() - k + 1; --i) {
            swap(nums[0], nums[i]);
            --heapSize;
            maxHeapify(nums, 0, heapSize);
        }
        return nums[0];
    }
};

你可能感兴趣的:(华为诺亚方舟实验室常见算法题题目二)