TensorBoard详解之安装使用和介绍

1 TensorBoard详解

TensorBoard是一个可视化的模块,该模块功能强大,可用于深度学习网络模型训练查看模型结构和训练效果(预测结果、网络模型结构图、准确率、loss曲线、学习率、权重分布等),可以帮你更好的了解网络模型,设计TensorBoard调用相关代码,以上结果即可保存,是整合资料、梳理模型的好帮手。

1.1 环境

本设备使用的环境为:
tensorflow-gpu 2.4.0
pytorch1.8.0
cuda 11.0
cudnn 8.0.5
tensorboard 2.7.0
安装TensorBoard,必须要配一个带GPU的虚拟环境,tensorflow-gpu和pytorch的环境选一个就好,配好环境后,下面介绍安装技巧和步骤。

1.2 安装

1,可以在激活的命令行中安装:

conda activate pytorch1.8.0

之后,在命令行中输入:

pip install tensorboard
pip install tensorboardX

Tensorboard其实是TensorFlow♂ 的一个附加工具,而TensorboardX 这个工具使得 TensorFlow 外的其他神经网络框架也可以使用到 Tensorboard 的便捷功能,如pytorch;安装的版本不用管,会自动安装最近的版本,本设备pytorch环境安装情况如下:
TensorBoard详解之安装使用和介绍_第1张图片

当然,用一些镜像源可以加速下载,下面给出一些好用的镜像源(清华和豆瓣镜像源比较快):

https://pypi.tuna.tsinghua.edu.cn/simple
https://pypi.douban.com/simple

使用方法在pip安装命令行末尾加( -i 镜像网址),pip安装其他模块也适用。

pip install tensorboard -i https://pypi.tuna.tsinghua.edu.cn/simple

2,编译器自动提醒安装,点击确定安装会在编译器终端自动安装;
3,编译器终端命令行安装,该方式在编译器中选择带GPU的环境后,不虚激活环境,直接pip 输入命令行直接安装,方法同上述1。
4,克隆代码安装GitHub,按照README.md配置并安装,针对GitHub下载部分文件方法以及GitHub加速镜像网站,可参考我的前面博文:

GitHub上只下载部分文件的操作教程
GitHub加速网址及使用教程
注意:其实其他模块安装包,这些方法基本都适用。

1.3 展示

安装完成后,在该虚拟环境中输入:

pip list

可查看是否安装成功,该展示为本设备tensorflow2虚拟环境的安装情况:
TensorBoard详解之安装使用和介绍_第2张图片
并且下次打开VS code编译器,有“是否使用TensorBoard模块功能”的提示,我们点击“是”,就可以开启TensorBoard的使用,在网络训练结束后将自动生成runs文件夹,里面有后面使用的event file。
TensorBoard详解之安装使用和介绍_第3张图片

1.4 说明

打开event file的方法也可以在该文本文件夹下,按住shift键,并点击右键,鼠标点击“在此处打开powershell窗口(S)”,并输入:

tensorboard --logdir runs

该runs文件夹是TensorBoard调用代码生成的,你也可以在代码中修改为生成logs文件夹等;
点击enter键之后,可以获得TensorBoard可视化结果网址:

http://localhost:6006/

结果如下图:
TensorBoard详解之安装使用和介绍_第4张图片
TensorBoard详解之安装使用和介绍_第5张图片

2.使用

2.1步骤

如下面两张图所示,3个黄色框分别对应三个操作步骤:

1,获得代码子文件夹名称为runs里面events.开头的文本文件(event file),一般在runs的子文件下点开可以看到;
2,在编译器(VS Code、Pycharm)在底部终端输入:tensorboard --logdir runs
TensorBoard详解之安装使用和介绍_第6张图片

TensorBoard详解之安装使用和介绍_第7张图片

3,复制生成的网址,在浏览器打开。

http://localhost:6006/

最后生成TensorBoard可视化界面。

TensorBoard详解之安装使用和介绍_第8张图片

生成event file文本的方法:

  1. 训练网络自动生成,针对该无法成功的,应该是启动编辑器时没有选用提示显示的使用tensorboard模块,那我们还有下面两种方法,方法3亲测可用;
  2. 添加py代码文件保存:
import numpy as np
from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter(comment='tensorboard_test')

for x in range(50):

    writer.add_scalar('y=2x', x * 2, x)
    writer.add_scalar('y=pow(2, x)',  2 ** x, x)
    
    writer.add_scalars('data/scalar_group', {"xsinx": x * np.sin(x),
                                             "xcosx": x * np.cos(x),
                                             "arctanx": np.arctan(x)}, x)
writer.close()

3,自行在tensorboard界面下载
TensorBoard详解之安装使用和介绍_第9张图片

2.2常用镜像网址

清华:https://pypi.tuna.tsinghua.edu.cn/simple
阿里云:http://mirrors.aliyun.com/pypi/simple/
中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/
华中理工大学:http://pypi.hustunique.com/
山东理工大学:http://pypi.sdutlinux.org/
豆瓣:http://pypi.douban.com/simple/

3.代码讲解

下面介绍该模块的常用函数和示例代码:

3.1 函数介绍

  1. tensorboard --logdir=路径
    该方式为tensorboard文件的生成之后,在命令行调用该文件,获得tensorboard网址(前面已介绍)
tensorboard --logdir=G:\wuzhihua\yolo3-pytorch-master\runs
  1. SummaryWriter()
    该函数为创建一个tensorboard文件,调用方式为:
writer = SummaryWriter(log_dir=‘runs’,flush_secs=30)

3, writer.add_graph()
该函数为创建Graphs,Graphs中存放了网络结构,
TensorBoard详解之安装使用和介绍_第10张图片

if Cuda:
    graph_inputs = torch.from_numpy(np.random.rand(1,3,input_shape[0],input_shape[1])).type(torch.FloatTensor).cuda()
else:
    graph_inputs = torch.from_numpy(np.random.rand(1,3,input_shape[0],input_shape[1])).type(torch.FloatTensor)
writer.add_graph(model, (graph_inputs,))

3.2 示例代码

最后,提供用TensorBoard创建Graph和简单模式并可视化输出显示代码示例:

import torch
from torch.autograd import Variable
import torch.nn.functional as functional
from tensorboardX import SummaryWriter

import matplotlib.pyplot as plt
import numpy as np

# x的shape大小
x = torch.from_numpy(np.linspace(-1, 1, 50).reshape([50, 1])).type(torch.FloatTensor)
# y的shape大小
y = torch.sin(x) + 0.2 * torch.rand(x.size())


class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        # Applies a linear transformation to the incoming data: :math:y = xA^T + b
        # 全连接层,公式为y = xA^T + b
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)

    def forward(self, x):
        # 隐含层的输出
        hidden_layer = functional.relu(self.hidden(x))
        output_layer = self.predict(hidden_layer)
        return output_layer


# 类的建立
net = Net(n_feature=1, n_hidden=10, n_output=1)

writer = SummaryWriter('runs')
graph_inputs = torch.from_numpy(np.random.rand(2, 1)).type(torch.FloatTensor)
writer.add_graph(net, (graph_inputs,))

# torch.optim是优化器模块
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)

# 均方差loss
loss_func = torch.nn.MSELoss()

for t in range(2000):
    prediction = net(x)
    loss = loss_func(prediction, y)

    # 反向传递步骤
    # 1、初始化梯度
    optimizer.zero_grad()
    # 2、计算梯度
    loss.backward()
    # 3、进行optimizer优化
    optimizer.step()

    writer.add_scalar('loss', loss, t)

writer.close()

结果展示:

TensorBoard详解之安装使用和介绍_第11张图片

注意:界面里面还能修改画图曲线的颜色,要保存结果修改相关代码即可。
TensorBoard`的介绍到此结束,要去PyTorch♀官方查看使用源码的小伙伴可以从以下进入学习:

https://pytorch.org/
https://pytorch.org/tutorials/recipes/recipes/tensorboard_with_pytorch.html?highlight=tensorboard

TensorBoard详解之安装使用和介绍_第12张图片

TensorBoard详解之安装使用和介绍_第13张图片

TensorBoard详解之安装使用和介绍_第14张图片

参考:
本文作者:会飞的渔WZH
【TensorBoard详解之安装使用和代码介绍】
本文链接:https://blog.csdn.net/wuzhihuaw/article/details/121357355

你可能感兴趣的:(计算机视觉,图像处理,人工智能,深度学习)