sparkStreaming:kafka topic连接spark处理数据传输到kafka另一个topic

目录

一、nc -lk 端口号连接sparkStreaming

二、sparkStreaming : kafka订阅主题

三、SparkStreaming: kafkaSource  to kafkaSink


一、nc -lk 端口号连接sparkStreaming

import org.apache.spark.SparkConf
import org.apache.spark.sql.catalyst.expressions.Second
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object SparkStreamDemo1 {
  def main(args: Array[String]): Unit = {

    val sparkConf: SparkConf = new SparkConf().setMaster("local[2]").setAppName("sparkstream1")

    //定义流,采集周期3秒

    val streamingContext = new StreamingContext(sparkConf, Seconds(3))

    // 配置数据源为指定机器和端口
    val socketLineStream: ReceiverInputDStream[String] = streamingContext.socketTextStream("192.168.91.180", 8888)
    //业务处理
    val wordStream: DStream[String] = socketLineStream.flatMap(x => x.split("\\s+"))
    val mapStream: DStream[(String, Int)] = wordStream.map((_, 1))
    val wordcountStream: DStream[(String, Int)] = mapStream.reduceByKey(_ + _)
    //输出结果
    wordcountStream.print()

    //启动采集器
    streamingContext.start()
    streamingContext.awaitTermination()

  }

}

[root@reagan180 ~] nc -lk 8888

二、sparkStreaming : kafka订阅主题

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object SparkStreamKafkaSource {
  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf().setAppName("sparkKafkaStream").setMaster("local[*]")

    val streamingContext = new StreamingContext(conf, Seconds(5))

    streamingContext.checkpoint("checkpoint")

    val kafkaParams = Map(
      (ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "192.168.91.180:9092"),
      (ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
      (ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
      (ConsumerConfig.GROUP_ID_CONFIG -> "sparkstreamgropu1")
    )
    val kafkaStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(
      streamingContext,
      LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe(Set("sparkkafkastu"), kafkaParams)
      //kafka-topics.sh --create --zookeeper 192.168.91.180:2181 --topic sparkkafkastu --partitions 1 --replication-factor 1
    )
/*    //KeyValue(key,value)
    //无状态,每个窗口数据独立
    val wordCountStream: DStream[(String, Int)] = kafkaStream.flatMap(x => x.value().toString.split("\\s+"))
      .map((_, 1))
      .reduceByKey(_ + _)

    wordCountStream.print()*/

    //记录状态
    //updateStateByKey:根据key对数据的状态进行更新
    //传递的参数含有两个值
    //第一个值表示相同key的value数据
    //第二个值表示缓冲区中相同key的value值
    val sumStateStream: DStream[(String, Int)] = kafkaStream.flatMap(x => x.value().toString.split("\\s+"))
      .map(x => (x, 1))
      .updateStateByKey {
        case (seq, buffer) => {
          println("j进入到updateStateByKey函数中")
          println("seqvalue", seq.toList.toString())
          println("buffer", buffer.getOrElse(0).toString)
          val sum: Int = buffer.getOrElse(0) + seq.sum
          Option(sum)
        }
      }

    sumStateStream.print()

    streamingContext.start()
    streamingContext.awaitTermination()
  }

}

三、SparkStreaming: kafkaSource  to kafkaSink

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import java.util

object SparkStreamUserFriendramToUserFriend {
  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf().setAppName("sparkufStream3").setMaster("local[*]")
    //定义流,采集周期5秒
    val streamingContext = new StreamingContext(conf, Seconds(5))

    streamingContext.checkpoint("checkpoint")

    val kafkaParams: Map[String, String] = Map(
      (ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "192.168.91.180:9092"),
      (ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
      (ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
      (ConsumerConfig.GROUP_ID_CONFIG -> "sparkuf3"),
      (ConsumerConfig.AUTO_OFFSET_RESET_CONFIG->"earliest")
    )
    val kafkaStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(
      streamingContext,
      LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe(Set("user_friends_raw"), kafkaParams)
    )
    kafkaStream.foreachRDD(
      rdd => {
        rdd.foreachPartition(
          x => {
            val props = new util.HashMap[String, Object]()
            props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.91.180:9092")
            props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")
            props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")
            val producer = new KafkaProducer[String, String](props)
            x.foreach(
              y => {
                val splits: Array[String] = y.value().split(",")
                if (splits.length == 2) {
                  val userid = splits(0)
                  val friends = splits(1).split("\\s+")
                  for (friend <- friends) {
                    val record = new ProducerRecord[String, String]("user_friends2", userid + "," + friend)
                    producer.send(record)
                  }
                }
              }
            )
          }
        )
      }
    )

    streamingContext.start()
    streamingContext.awaitTermination()
  }
}

你可能感兴趣的:(kafka,spark,大数据)