根据相机位姿求指定点的世界坐标及其python实现


Author shaniadolphin
e-mail [email protected]

求解目的

  本文将展示位姿估计的一种应用,即通过单目相机对环境进行测量。简单来说,本文的工作就是利用下面的两幅图,在已知P1、P2、P3、P4四点世界坐标的情况下,计算出其它点的世界坐标。

  如图所示,一个标准的标定板,标定板每个格子的尺寸是30mm,通过标定四周的4个点P1、P2、P3、P4,旁边有茶罐,有待求点为P5、P6

  这种应用可以利用一个已经尺寸物体,通过两张不同视角的照片求未知物体的尺寸。比如上图中的通过已知的标定板求茶罐的尺寸。而在现实应用中可以用这种方式来求车的尺寸,建筑的高度,货物的体积等等。

求解原理

  如下图,根据P1、P2、P3、P4四点的空间坐标,通过openCV的PNP函数,可以计算出两次拍照的相机位姿,从而进一步计算出相机的坐标与。那么将与,与连成直线,获得两条直线方程和,组成方程组求解得到它们的交点,即为待求目标点的坐标。

1. 求出点的相机坐标系坐标

  关于P点如何从二维映射到三维,参考上图,的坐标通过解已经求出,待求点P在图像中的像素坐标为。

  求出在相机坐标系中的坐标(也就是上图中的点)。具体的转换公式如下,式中为相机镜头的焦距,在本次实验中使用的是中一光学的35mm手动镜头。为点的像素坐标,其余为相机内参数。

  输入拍到的图片的点,包括待求点的像素坐标,示例如下:

    P11 = np.array([0, 0, 0])
    P12 = np.array([0, 300, 0])
    P13 = np.array([210, 0, 0])
    P14 = np.array([210, 300, 0])    
    p11 = np.array([1765, 725])
    p12 = np.array([3068, 1254])
    p13 = np.array([1249, 1430])
    p14 = np.array([2648, 2072]) 
    p4psolver1.Points3D[0] = np.array([P11,P12,P13,P14])
    p4psolver1.Points2D[0] = np.array([p11,p12,p13,p14])
    #p4psolver1.point2find = np.array([4149, 671])
    #p4psolver1.point2find = np.array([675, 835])
    p4psolver1.point2find = np.array([691, 336])    

  读取标定文件中的相机内参,代码如下,在代码里预设了相机的传感器大小,笔者所用的D7000单反是DX画幅的,根据可查到的资料,传感器的规格为23.6mm*15.6mm。

  笔者用在本机的镜头是中一的35mm手动定焦镜头。

    def getudistmap(self, filename):
        with open(filename, 'r',newline='') as csvfile:
            spamreader = csv.reader(csvfile, delimiter=',', quotechar='"')
            rows = [row for row in spamreader]
            self.cameraMatrix = np.zeros((3, 3))
            #Dt = np.zeros((4, 1))
            size_w = 23.6
            size_h = 15.6
            imageWidth = int(rows[0][1])
            imageHeight = int(rows[0][2])
            self.cameraMatrix[0][0] = rows[1][1]
            self.cameraMatrix[1][1] = rows[1][2]
            self.cameraMatrix[0][2] = rows[1][3]
            self.cameraMatrix[1][2] = rows[1][4]
            self.cameraMatrix[2][2] = 1
            print(len(rows[2]))
            if len(rows[2]) == 5:
                print('fisheye')
                self.distCoefs = np.zeros((4, 1))
                self.distCoefs[0][0] = rows[2][1]
                self.distCoefs[1][0] = rows[2][2]
                self.distCoefs[2][0] = rows[2][3]
                self.distCoefs[3][0] = rows[2][4]
                scaled_K = self.cameraMatrix * 0.8 # The values of K is to scale with image dimension.
                scaled_K[2][2] = 1.0 
                #newcameramtx = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify(self.cameraMatrix, self.distCoefs, (imageWidth, imageHeight), np.eye(3), balance=0)
                #map1, map2 = cv2.fisheye.initUndistortRectifyMap(self.cameraMatrix, self.distCoefs, np.eye(3), newcameramtx, (imageWidth, imageHeight), cv2.CV_32FC1)                     
            else:
                print('normal')
                self.distCoefs = np.zeros((1, 5))
                self.distCoefs[0][0] = rows[2][1]
                self.distCoefs[0][1] = rows[2][2]
                self.distCoefs[0][2] = rows[2][3]
                self.distCoefs[0][3] = rows[2][4]
                self.distCoefs[0][4] = rows[2][5]
                #newcameramtx, roi = cv2.getOptimalNewCameraMatrix(self.cameraMatrix, self.distCoefs, (imageWidth, imageHeight), 1, (imageWidth, imageHeight))
                #map1, map2 = cv2.initUndistortRectifyMap(self.cameraMatrix, self.distCoefs, None, newcameramtx, (imageWidth, imageHeight), cv2.CV_32FC1)        
            print('dim = %d*%d'%(imageWidth, imageHeight))
            print('Kt = \n', self.cameraMatrix)
            #print('newcameramtx = \n', newcameramtx)
            print('Dt = \n', self.distCoefs)
            self.f = [self.cameraMatrix[0][0]*(size_w/imageWidth), self.cameraMatrix[1][1]*(size_h/imageHeight)]
            #self.f = [350, 350]
            print('f = \n', self.f)
            #print(map1,'\n',map2.T)
            return

  然后就可以将像素坐标转换到世界坐标了:

    def WordFrame2ImageFrame(self, WorldPoints):
        pro_points, jacobian = cv2.projectPoints(WorldPoints, self.rvecs, self.tvecs, self.cameraMatrix, self.distCoefs)
        return pro_points

    def ImageFrame2CameraFrame(self, pixPoints):
        fx = self.cameraMatrix[0][0]
        u0 = self.cameraMatrix[0][2]
        fy = self.cameraMatrix[1][1]
        v0 = self.cameraMatrix[1][2]
        zc = (self.f[0]+self.f[1])/2
        xc = (pixPoints[0] - u0) * self.f[0] / fx  #f=fx*传感器尺寸/分辨率
        yc = (pixPoints[1] - v0) * self.f[1] / fy
        point = np.array([xc,yc,zc])
        return point

2.求出P点在世界坐标系中的方向向量

  通过以上运算得到了,但这个点坐标是在相机坐标系中的,需要进一步求解点在世界坐标系中对应的坐标。

  为了将转为,即求出原点在相机坐标系下的坐标,需要使用到解求位姿时得到的三个欧拉角。相机坐标系按照轴、轴、轴的顺序旋转以上角度后将与世界坐标系完全平行,在这三次旋转中也会与坐标系一起旋转的,其在世界系中的位置会发生改变。为了保证系旋转后点依然保持在世界坐标系W原本的位置,需要对进行三次反向旋转,旋转后得到点在相机坐标系中新的坐标值记为,的值等于世界坐标系中向量的值。最终,点的世界坐标=的值+的世界坐标值,具体操作如下:

第一次旋转:

  原始相机坐标系绕轴旋转了变为系,,将点绕轴旋转,得到,其为系中的坐标。

    def CodeRotateByZ(self, x,  y,  thetaz):#将空间点绕Z轴旋转
        x1=x #将变量拷贝一次,保证&x == &outx这种情况下也能计算正确
        y1=y
        rz = thetaz*3.141592653589793/180
        outx = math.cos(rz)*x1 - math.sin(rz)*y1
        outy = math.sin(rz)*x1 + math.cos(rz)*y1
        return outx,outy
第二次旋转:

  绕轴旋转了变为系,,将点绕轴旋转,得到,其为系中的坐标。

    def CodeRotateByY(self, x, z, thetay):
        x1=x
        z1=z
        ry = thetay * 3.141592653589793 / 180
        outx = math.cos(ry) * x1 + math.sin(ry) * z1
        outz = math.cos(ry) * z1 - math.sin(ry) * x1
        return outx,outz
第三次旋转:

  绕轴旋转了变为系,,将点绕轴旋转,得到,其为系中的坐标。

    def CodeRotateByX(self, y, z, thetax):
        y1=y
        z1=z
        rx = (thetax * 3.141592653589793) / 180
        outy = math.cos(rx) * y1 - math.sin(rx) * z1
        outz = math.cos(rx) * z1 + math.sin(rx) * y1
        return outy,outz

  此时,世界坐标系中,相机的位置坐标为。结合上面的旋转函数,完整的求解代码如下所示:

    def solver(self):
        retval, self.rvec, self.tvec = cv2.solvePnP(self.Points3D, self.Points2D, self.cameraMatrix, self.distCoefs)
        #print('self.rvec:',self.rvec)
        #print('self.tvec:',self.tvec)
        thetax,thetay,thetaz = self.rotationVectorToEulerAngles(self.rvec, 0)
        x = self.tvec[0][0]
        y = self.tvec[1][0]
        z = self.tvec[2][0]
        self.Position_OwInCx = x
        self.Position_OwInCy = y
        self.Position_OwInCz = z
        self.Position_theta = [thetax, thetay, thetaz]
        #print('Position_theta:',self.Position_theta)
        x, y = self.CodeRotateByZ(x, y, -1 * thetaz)
        x, z = self.CodeRotateByY(x, z, -1 * thetay)
        y, z = self.CodeRotateByX(y, z, -1 * thetax)
        self.Theta_W2C = (-1*thetax, -1*thetay,-1*thetaz)
        self.Position_OcInWx = x*(-1)
        self.Position_OcInWy = y*(-1)
        self.Position_OcInWz = z*(-1)
        self.Position_OcInW = np.array([self.Position_OcInWx, self.Position_OcInWy, self.Position_OcInWz])
        print('Position_OcInW:', self.Position_OcInW)

  通过世界坐标系的相机坐标a1,P点坐标a2,构成第一条直线A。

    def SetLineA(self, A1x, A1y, A1z, A2x, A2y, A2z):
        self.a1 = np.array([A1x, A1y, A1z]) 
        self.a2 = np.array([A2x, A2y, A2z])

3. 最后,根据两幅图得到的两条直线,计算出P点的世界坐标

  对另外一幅图也进行如上操作,获得两条直线A、B,因此求出两条直线A与B的交点即可求出目标点的世界坐标。然而在现实中,由于误差的存在,A与B基本不会相交,因此在计算时需要求他们之间的最近点。

class GetDistanceOf2linesIn3D():
    def __init__(self):
        print('GetDistanceOf2linesIn3D class')

    def dot(self, ax, ay, az, bx, by, bz):
        result = ax*bx + ay*by + az*bz
        return result

    def cross(self, ax, ay, az, bx, by, bz):
        x = ay*bz - az*by
        y = az*bx - ax*bz
        z = ax*by - ay*bx
        return x,y,z

    def crossarray(self, a, b):
        x = a[1]*b[2] - a[2]*b[1]
        y = a[2]*b[0] - a[0]*b[2]
        z = a[0]*b[1] - a[1]*b[0]
        return np.array([x,y,z])

    def norm(self, ax, ay, az):
        return math.sqrt(self.dot(ax, ay, az, ax, ay, az))

    def norm2(self, one):
        return math.sqrt(np.dot(one, one))


    def SetLineA(self, A1x, A1y, A1z, A2x, A2y, A2z):
        self.a1 = np.array([A1x, A1y, A1z]) 
        self.a2 = np.array([A2x, A2y, A2z])

    def SetLineB(self, B1x, B1y, B1z, B2x, B2y, B2z):
        self.b1 = np.array([B1x, B1y, B1z])    
        self.b2 = np.array([B2x, B2y, B2z])

    def GetDistance(self):
        d1 = self.a2 - self.a1
        d2 = self.b2 - self.b1
        e = self.b1 - self.a1

        cross_e_d2 = self.crossarray(e,d2)
        cross_e_d1 = self.crossarray(e,d1)
        cross_d1_d2 = self.crossarray(d1,d2)

        dd = self.norm2(cross_d1_d2)
        t1 = np.dot(cross_e_d2, cross_d1_d2)
        t2 = np.dot(cross_e_d1, cross_d1_d2)

        t1 = t1/(dd*dd)
        t2 = t2/(dd*dd)

        self.PonA = self.a1 + (self.a2 - self.a1) * t1
        self.PonB = self.b1 + (self.b2 - self.b1) * t2

        self.distance = self.norm2(self.PonB - self.PonA)
        print('distance=', self.distance)
        return self.distance

总结与验证

  通过以上的讲解,说明了大致的原理和过程。完整的求解代码及结果如下,其中代码中打开的“calibration.csv”是一个标定生成的文件,存取了笔者D7000标定后得到的内参,如表格清单所示。

  表格清单:

dim 3696 2448
cameraMatrix 5546.18009098042 5572.883 1821.049 1347.461
distCoefs -0.12735 0.200792 -0.00209 0.000943 -0.79439

  代码清单:

#!/usr/bin/env python3
# coding:utf-8
import cv2
import numpy as np
import time
from PIL import Image,ImageTk
import threading
import os
import re    
import subprocess
import random
import math
import csv
import argparse

class PNPSolver(): 
    def __init__(self):
        self.COLOR_WHITE = (255,255,255)
        self.COLOR_BLUE = (255,0,0)
        self.COLOR_LBLUE = (255, 200, 100)
        self.COLOR_GREEN = (0,240,0)
        self.COLOR_RED = (0,0,255)
        self.COLOR_DRED = (0,0,139)
        self.COLOR_YELLOW = (29,227,245)
        self.COLOR_PURPLE = (224,27,217)
        self.COLOR_GRAY = (127,127,127)  
        self.Points3D = np.zeros((1, 4, 3), np.float32)  #存放4组世界坐标位置
        self.Points2D = np.zeros((1, 4, 2), np.float32)   #存放4组像素坐标位置
        self.point2find = np.zeros((1, 2), np.float32)
        self.cameraMatrix = None
        self.distCoefs = None
        self.f = 0

    def rotationVectorToEulerAngles(self, rvecs, anglestype):
        R = np.zeros((3, 3), dtype=np.float64)
        cv2.Rodrigues(rvecs, R)
        sy = math.sqrt(R[2,1] * R[2,1] +  R[2,2] * R[2,2])
        singular = sy < 1e-6
        if  not singular:
            x = math.atan2(R[2,1] , R[2,2])
            y = math.atan2(-R[2,0], sy)
            z = math.atan2(R[1,0], R[0,0])
        else :
            x = math.atan2(-R[1,2], R[1,1])
            y = math.atan2(-R[2,0], sy)
            z = 0
        if anglestype == 0:
            x = x*180.0/3.141592653589793
            y = y*180.0/3.141592653589793
            z = z*180.0/3.141592653589793
        elif anglestype == 1:
            x = x
            y = y
            z = z
        print(x)
        return x,y,z

    def CodeRotateByZ(self, x,  y,  thetaz):#将空间点绕Z轴旋转
        x1=x #将变量拷贝一次,保证&x == &outx这种情况下也能计算正确
        y1=y
        rz = thetaz*3.141592653589793/180
        outx = math.cos(rz)*x1 - math.sin(rz)*y1
        outy = math.sin(rz)*x1 + math.cos(rz)*y1
        return outx,outy

    def CodeRotateByY(self, x, z, thetay):
        x1=x
        z1=z
        ry = thetay * 3.141592653589793 / 180
        outx = math.cos(ry) * x1 + math.sin(ry) * z1
        outz = math.cos(ry) * z1 - math.sin(ry) * x1
        return outx,outz

    def CodeRotateByX(self, y, z, thetax):
        y1=y
        z1=z
        rx = (thetax * 3.141592653589793) / 180
        outy = math.cos(rx) * y1 - math.sin(rx) * z1
        outz = math.cos(rx) * z1 + math.sin(rx) * y1
        return outy,outz

    def solver(self):
        retval, self.rvec, self.tvec = cv2.solvePnP(self.Points3D, self.Points2D, self.cameraMatrix, self.distCoefs)
        thetax,thetay,thetaz = self.rotationVectorToEulerAngles(self.rvec, 0)
        x = self.tvec[0][0]
        y = self.tvec[1][0]
        z = self.tvec[2][0]
        self.Position_OwInCx = x
        self.Position_OwInCy = y
        self.Position_OwInCz = z
        self.Position_theta = [thetax, thetay, thetaz]
        #print('Position_theta:',self.Position_theta)
        x, y = self.CodeRotateByZ(x, y, -1 * thetaz)
        x, z = self.CodeRotateByY(x, z, -1 * thetay)
        y, z = self.CodeRotateByX(y, z, -1 * thetax)
        self.Theta_W2C = ([-1*thetax, -1*thetay,-1*thetaz])
        self.Position_OcInWx = x*(-1)
        self.Position_OcInWy = y*(-1)
        self.Position_OcInWz = z*(-1)
        self.Position_OcInW = np.array([self.Position_OcInWx, self.Position_OcInWy, self.Position_OcInWz])
        print('Position_OcInW:', self.Position_OcInW)

    def WordFrame2ImageFrame(self, WorldPoints):
        pro_points, jacobian = cv2.projectPoints(WorldPoints, self.rvecs, self.tvecs, self.cameraMatrix, self.distCoefs)
        return pro_points

    def ImageFrame2CameraFrame(self, pixPoints):
        fx = self.cameraMatrix[0][0]
        u0 = self.cameraMatrix[0][2]
        fy = self.cameraMatrix[1][1]
        v0 = self.cameraMatrix[1][2]
        zc = (self.f[0]+self.f[1])/2
        xc = (pixPoints[0] - u0) * self.f[0] / fx  #f=fx*传感器尺寸/分辨率
        yc = (pixPoints[1] - v0) * self.f[1] / fy
        point = np.array([xc,yc,zc])
        return point

    def getudistmap(self, filename):
        with open(filename, 'r',newline='') as csvfile:
            spamreader = csv.reader(csvfile, delimiter=',', quotechar='"')
            rows = [row for row in spamreader]
            self.cameraMatrix = np.zeros((3, 3))
            #Dt = np.zeros((4, 1))
            size_w = 23.6
            size_h = 15.6
            imageWidth = int(rows[0][1])
            imageHeight = int(rows[0][2])
            self.cameraMatrix[0][0] = rows[1][1]
            self.cameraMatrix[1][1] = rows[1][2]
            self.cameraMatrix[0][2] = rows[1][3]
            self.cameraMatrix[1][2] = rows[1][4]
            self.cameraMatrix[2][2] = 1
            print(len(rows[2]))
            if len(rows[2]) == 5:
                print('fisheye')
                self.distCoefs = np.zeros((4, 1))
                self.distCoefs[0][0] = rows[2][1]
                self.distCoefs[1][0] = rows[2][2]
                self.distCoefs[2][0] = rows[2][3]
                self.distCoefs[3][0] = rows[2][4]
                scaled_K = self.cameraMatrix * 0.8 # The values of K is to scale with image dimension.
                scaled_K[2][2] = 1.0                   
            else:
                print('normal')
                self.distCoefs = np.zeros((1, 5))
                self.distCoefs[0][0] = rows[2][1]
                self.distCoefs[0][1] = rows[2][2]
                self.distCoefs[0][2] = rows[2][3]
                self.distCoefs[0][3] = rows[2][4]
                self.distCoefs[0][4] = rows[2][5]     
            print('dim = %d*%d'%(imageWidth, imageHeight))
            print('Kt = \n', self.cameraMatrix)
            print('Dt = \n', self.distCoefs)
            self.f = [self.cameraMatrix[0][0]*(size_w/imageWidth), self.cameraMatrix[1][1]*(size_h/imageHeight)]
            print('f = \n', self.f)
            return

class GetDistanceOf2linesIn3D():
    def __init__(self):
        print('GetDistanceOf2linesIn3D class')

    def dot(self, ax, ay, az, bx, by, bz):
        result = ax*bx + ay*by + az*bz
        return result

    def cross(self, ax, ay, az, bx, by, bz):
        x = ay*bz - az*by
        y = az*bx - ax*bz
        z = ax*by - ay*bx
        return x,y,z

    def crossarray(self, a, b):
        x = a[1]*b[2] - a[2]*b[1]
        y = a[2]*b[0] - a[0]*b[2]
        z = a[0]*b[1] - a[1]*b[0]
        return np.array([x,y,z])

    def norm(self, ax, ay, az):
        return math.sqrt(self.dot(ax, ay, az, ax, ay, az))

    def norm2(self, one):
        return math.sqrt(np.dot(one, one))


    def SetLineA(self, A1x, A1y, A1z, A2x, A2y, A2z):
        self.a1 = np.array([A1x, A1y, A1z]) 
        self.a2 = np.array([A2x, A2y, A2z])

    def SetLineB(self, B1x, B1y, B1z, B2x, B2y, B2z):
        self.b1 = np.array([B1x, B1y, B1z])    
        self.b2 = np.array([B2x, B2y, B2z])

    def GetDistance(self):
        d1 = self.a2 - self.a1
        d2 = self.b2 - self.b1
        e = self.b1 - self.a1

        cross_e_d2 = self.crossarray(e,d2)
        cross_e_d1 = self.crossarray(e,d1)
        cross_d1_d2 = self.crossarray(d1,d2)

        dd = self.norm2(cross_d1_d2)
        t1 = np.dot(cross_e_d2, cross_d1_d2)
        t2 = np.dot(cross_e_d1, cross_d1_d2)

        t1 = t1/(dd*dd)
        t2 = t2/(dd*dd)

        self.PonA = self.a1 + (self.a2 - self.a1) * t1
        self.PonB = self.b1 + (self.b2 - self.b1) * t2

        self.distance = self.norm2(self.PonB - self.PonA)
        print('distance=', self.distance)
        return self.distance


if __name__ == "__main__":
    print("***************************************")
    print("test example")
    print("***************************************")
    parser = argparse.ArgumentParser(description='test')
    parser.add_argument('-file', type=str, default = 'calibration.csv')
    args = parser.parse_args()
    calibrationfile = args.file

    p4psolver1 = PNPSolver()
    '''
    P11 = np.array([0, 0, 0])
    P12 = np.array([0, 200, 0])
    P13 = np.array([150, 0, 0])
    P14 = np.array([150, 200, 0])
    p11 = np.array([2985, 1688])
    p12 = np.array([5081, 1690])
    p13 = np.array([2997, 2797])
    p14 = np.array([5544, 2757])
    '''
    P11 = np.array([0, 0, 0])
    P12 = np.array([0, 300, 0])
    P13 = np.array([210, 0, 0])
    P14 = np.array([210, 300, 0])    
    p11 = np.array([1765, 725])
    p12 = np.array([3068, 1254])
    p13 = np.array([1249, 1430])
    p14 = np.array([2648, 2072]) 

    p4psolver1.Points3D[0] = np.array([P11,P12,P13,P14])
    p4psolver1.Points2D[0] = np.array([p11,p12,p13,p14])
    #p4psolver1.point2find = np.array([4149, 671])
    #p4psolver1.point2find = np.array([675, 835])
    p4psolver1.point2find = np.array([691, 336])
    p4psolver1.getudistmap(calibrationfile)
    p4psolver1.solver()

    p4psolver2 = PNPSolver()
    '''
    P21 = np.array([0, 0, 0])
    P22 = np.array([0, 200, 0])
    P23 = np.array([150, 0, 0])
    P24 = np.array([150, 200, 0])
    p21 = np.array([3062, 3073])
    p22 = np.array([3809, 3089])
    p23 = np.array([3035, 3208])
    p24 = np.array([3838, 3217])
    '''
    P21 = np.array([0, 0, 0])
    P22 = np.array([0, 300, 0])
    P23 = np.array([210, 0, 0])
    P24 = np.array([210, 300, 0])  
    p21 = np.array([1307, 790])
    p22 = np.array([2555, 797])
    p23 = np.array([1226, 1459])
    p24 = np.array([2620, 1470])

    p4psolver2.Points3D[0] = np.array([P21,P22,P23,P24])
    p4psolver2.Points2D[0] = np.array([p21,p22,p23,p24])
    #p4psolver2.point2find = np.array([3439, 2691])
    #p4psolver2.point2find = np.array([712, 1016])
    p4psolver2.point2find = np.array([453, 655])
    p4psolver2.getudistmap(calibrationfile)
    p4psolver2.solver()

    point2find1_CF = p4psolver1.ImageFrame2CameraFrame(p4psolver1.point2find)
    #Oc1P_x1 = point2find1_CF[0]
    #Oc1P_y1 = point2find1_CF[1]
    #Oc1P_z1 = point2find1_CF[2]
    Oc1P_1 = np.array(point2find1_CF)
    print(Oc1P_1)

    Oc1P_1[0], Oc1P_1[1] = p4psolver1.CodeRotateByZ(Oc1P_1[0], Oc1P_1[1], p4psolver1.Theta_W2C[2])
    Oc1P_1[0], Oc1P_1[2] = p4psolver1.CodeRotateByY(Oc1P_1[0], Oc1P_1[2], p4psolver1.Theta_W2C[1])
    Oc1P_1[1], Oc1P_1[2] = p4psolver1.CodeRotateByX(Oc1P_1[1], Oc1P_1[2], p4psolver1.Theta_W2C[0])

    a1 = np.array([p4psolver1.Position_OcInWx, p4psolver1.Position_OcInWy, p4psolver1.Position_OcInWz])
    a2 =  a1 + Oc1P_1
    #a2 = (p4psolver1.Position_OcInWx + Oc1P_1[0], p4psolver1.Position_OcInWy + Oc1P_y1, p4psolver1.Position_OcInWz + Oc1P_z1)


    point2find2_CF = p4psolver2.ImageFrame2CameraFrame(p4psolver2.point2find)
    #Oc2P_x2 = point2find2_CF[0]
    #Oc2P_y2 = point2find2_CF[1]
    #Oc2P_z2 = point2find2_CF[2]
    Oc2P_2 = np.array(point2find2_CF)
    print(Oc2P_2)

    Oc2P_2[0], Oc2P_2[1] = p4psolver2.CodeRotateByZ(Oc2P_2[0], Oc2P_2[1], p4psolver2.Theta_W2C[2])
    Oc2P_2[0], Oc2P_2[2] = p4psolver2.CodeRotateByY(Oc2P_2[0], Oc2P_2[2], p4psolver2.Theta_W2C[1])
    Oc2P_2[1], Oc2P_2[2] = p4psolver2.CodeRotateByX(Oc2P_2[1], Oc2P_2[2], p4psolver2.Theta_W2C[0])

    b1 = ([p4psolver2.Position_OcInWx, p4psolver2.Position_OcInWy, p4psolver2.Position_OcInWz])
    b2 = b1 + Oc2P_2
    #b2 = (p4psolver2.Position_OcInWx + Oc2P_x2, p4psolver2.Position_OcInWy + Oc2P_y2, p4psolver2.Position_OcInWz + Oc2P_z2)
    
    g = GetDistanceOf2linesIn3D()
    g.SetLineA(a1[0], a1[1], a1[2], a2[0], a2[1], a2[2])
    g.SetLineB(b1[0], b1[1], b1[2], b2[0], b2[1], b2[2])

    distance = g.GetDistance()

    pt = (g.PonA + g.PonB)/2

    print(pt)


    A = np.array([241.64926392,-78.7377477,166.08307887])
    B = np.array([141.010851,-146.64449841,167.28164652])
    print(math.sqrt(np.dot(A-B,A-B)))

  A点的世界坐标点是:

distance= 0.13766177937900279
[241.64926392 -78.7377477  166.08307887]

  B点的世界坐标点是:

distance= 0.7392672771306183
[ 141.010851   -146.64449841  167.28164652]

  计算AB点的距离:

    A = np.array([241.64926392,-78.7377477,166.08307887])
    B = np.array([141.010851,-146.64449841,167.28164652])
    print(math.sqrt(np.dot(A-B,A-B)))

  结果为:

121.41191667813395

  从数据可以看出茶罐的高度约为171mm(玻璃标定板的高度为4mm),对角的长度约为121mm。

  也可以在生成世界坐标数据的时候,在Z轴数据中填入标定板的高度,如下所示:

    P11 = np.array([0, 0, 4])
    P12 = np.array([0, 300, 4])
    P13 = np.array([210, 0, 4])
    P14 = np.array([210, 300, 4])  
    P21 = np.array([0, 0, 4])
    P22 = np.array([0, 300, 4])
    P23 = np.array([210, 0, 4])
    P24 = np.array([210, 300, 4]) 

  即可直接得到对应的结果:

[ 141.010851   -146.64449841  171.28164652]
121.41191667813395

参考文档

# 链接地址 文档名称
1 https://www.cnblogs.com/singlex/p/pose_estimation_3.html 根据两幅图像的位姿估计结果求某点的世界坐标
2 https://www.cnblogs.com/singlex/p/6037020.html 子坐标系C在父坐标系W中的旋转问题

你可能感兴趣的:(根据相机位姿求指定点的世界坐标及其python实现)