day39 GIL锁、互斥锁、死锁、Semaphore、Event、线程Queue、线程池、进程池

目录

  • 一、验证GIL锁的存在方式
  • 二、GIL与普通互斥锁的区别
  • 三、io密集型和计算密集型
  • 四、哲学家就餐问题
    • 4.1 死锁问题
    • 4.2 递归锁解决死锁问题
  • 五、Semaphore信号量
  • 六、Event事件
  • 七、线程queue
  • 八、线程池
    • 8.1 为什么会出现池?
    • 8.2 如何使用
  • 九、进程池

一、验证GIL锁的存在方式

from threading import Thread
from multiprocessing import Process

def task():
    while True:
        pass

if __name__ == '__main__':
    for i in range(6):
        # t=Thread(target=task)  # 因为有GIL锁,同一时刻,只有一条线程执行,所以cpu不会满
        t=Process(target=task)   # 由于是多进程,进程中的线程会被cpu调度执行,6个cpu全在工作,就会跑满
        t.start()

二、GIL与普通互斥锁的区别

GIL锁是不能保证数据的安全,普通互斥锁来保证数据安全
GIL锁遇到io操作会让出CPU


from threading import Thread, Lock
import time

mutex = Lock()
money = 100


def task():
    global money
    mutex.acquire()
    temp = money
    time.sleep(1)   #GIL锁遇到io操作,让出CPU
    money = temp - 1
    mutex.release()


if __name__ == '__main__':
    ll=[]
    for i in range(10):
        t = Thread(target=task)
        t.start()
        # t.join()  # 会怎么样?变成了串行,不能这么做
        ll.append(t)
    for t in ll:
        t.join()
    print(money)

三、io密集型和计算密集型

以下只针对于cpython解释器
-在单核情况下:
-开多线程还是开多进程?不管干什么都是开线程
-在多核情况下:
-如果是计算密集型,需要开进程,能被多个cpu调度执行
-如果是io密集型,需要开线程,cpu遇到io会切换到其他线程执行

from threading import Thread
from multiprocessing import Process
import time


# 计算密集型
def task():
    count = 0
    for i in range(100000000):
        count += i


if __name__ == '__main__':
    ctime = time.time()
    ll = []
    for i in range(10):
        t = Thread(target=task)  # 开线程:42.68658709526062
        # t = Process(target=task)   # 开进程:9.04949426651001
        t.start()
        ll.append(t)

    for t in ll:
        t.join()
    print(time.time()-ctime)


## io密集型
def task():
    time.sleep(2)


if __name__ == '__main__':
    ctime = time.time()
    ll = []
    for i in range(400):
        t = Thread(target=task)  # 开线程:2.0559656620025635
        # t = Process(target=task)   # 开进程:9.506720781326294
        t.start()
        ll.append(t)

    for t in ll:
        t.join()
    print(time.time()-ctime)

四、哲学家就餐问题

4.1 死锁问题

是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁


# 单例模式:https://www.cnblogs.com/liuqingzheng/p/10038958.html
# 死锁现象,张三拿到了A锁,等B锁,李四拿到了B锁,等A锁
from threading import Thread, Lock
import time

mutexA = Lock()
mutexB = Lock()


def eat_apple(name):
    mutexA.acquire()
    print('%s 获取到了a锁' % name)
    mutexB.acquire()
    print('%s 获取到了b锁' % name)
    print('开始吃苹果,并且吃完了')
    mutexB.release()
    print('%s 释放了b锁' % name)
    mutexA.release()
    print('%s 释放了a锁' % name)


def eat_egg(name):
    mutexB.acquire()
    print('%s 获取到了b锁' % name)
    time.sleep(2)
    mutexA.acquire()
    print('%s 获取到了a锁' % name)
    print('开始吃鸡蛋,并且吃完了')
    mutexA.release()
    print('%s 释放了a锁' % name)
    mutexB.release()
    print('%s 释放了b锁' % name)


if __name__ == '__main__':
    ll = ['egon', 'alex', '铁蛋']
    for name in ll:
        t1 = Thread(target=eat_apple, args=(name,))
        t2 = Thread(target=eat_egg, args=(name,))
        t1.start()
        t2.start()

4.2 递归锁解决死锁问题

递归锁(可重入),同一个人可以多次acquire,每acquire一次,内部计数器加1,每relaese一次,内部计数器减一
只有计数器不为0,其他人都不获得这把锁

from threading import Thread, Lock,RLock
import time

# 同一把锁
# mutexA = Lock()
# mutexB = mutexA

# 使用可重入锁解决(同一把锁)
# mutexA = RLock()
# mutexB = mutexA
mutexA = mutexB =RLock()

def eat_apple(name):
    mutexA.acquire()
    print('%s 获取到了a锁' % name)
    mutexB.acquire()
    print('%s 获取到了b锁' % name)
    print('开始吃苹果,并且吃完了')
    mutexB.release()
    print('%s 释放了b锁' % name)
    mutexA.release()
    print('%s 释放了a锁' % name)


def eat_egg(name):
    mutexB.acquire()
    print('%s 获取到了b锁' % name)
    time.sleep(2)
    mutexA.acquire()
    print('%s 获取到了a锁' % name)
    print('开始吃鸡蛋,并且吃完了')
    mutexA.release()
    print('%s 释放了a锁' % name)
    mutexB.release()
    print('%s 释放了b锁' % name)


if __name__ == '__main__':
    ll = ['egon', 'alex', '铁蛋']
    for name in ll:
        t1 = Thread(target=eat_apple, args=(name,))
        t2 = Thread(target=eat_egg, args=(name,))
        t1.start()
        t2.start()

五、Semaphore信号量

Semaphore:信号量可以理解为多把锁,同时允许多个线程来更改数据

from  threading import Thread,Semaphore
import time
import random
sm=Semaphore(3) # 数字表示可以同时有多少个线程操作

def task(name):
    sm.acquire()
    print('%s 正在蹲坑'%name)
    time.sleep(random.randint(1,5))
    sm.release()
    
if __name__ == '__main__':
    for i in range(100):
        t=Thread(target=task,args=(i,))
        t.start()

六、Event事件

一些线程需要等到其他线程执行完成之后才能执行,类似于发射信号
比如一个线程等待另一个线程执行结束再继续执行
一些线程需要等到其他线程执行完成之后才能执行,类似于发射信号
比如一个线程等待另一个线程执行结束再继续执行

from threading import Thread, Event
import time

event = Event()


def girl(name):
    print('%s 现在不单身,正在谈恋爱'%name)
    time.sleep(10)
    print('%s 分手了,给屌丝男发了信号'%name)
    event.set()


def boy(name):
    print('%s 在等着女孩分手'%name)
    event.wait()  # 只要没来信号,就卡在者
    print('女孩分手了,机会来了,冲啊')


if __name__ == '__main__':
    lyf = Thread(target=girl, args=('刘亦菲',))
    lyf.start()

    for i in range(10):
        b = Thread(target=boy, args=('屌丝男%s号' % i,))
        b.start()

例:起两个线程,第一个线程读文件的前半部分,读完发一个信号,另一个进程读后半部分,并打印

from threading import Thread, Event
import time
import os

event = Event()
# 获取文件总大小
size = os.path.getsize('a.txt')


def read_first():
    with open('a.txt', 'r', encoding='utf-8') as f:
        n = size // 2  # 取文件一半,整除
        data = f.read(n)
        print(data)
        print('我一半读完了,发了个信号')
        event.set()


def read_last():
    event.wait()  # 等着发信号
    with open('a.txt', 'r', encoding='utf-8') as f:
        n = size // 2  # 取文件一半,整除
        # 光标从文件开头开始,移动了n个字节,移动到文件一半
        f.seek(n, 0)
        data = f.read()
        print(data)


if __name__ == '__main__':
    t1=Thread(target=read_first)
    t1.start()
    t2=Thread(target=read_last)
    t2.start()

七、线程queue

进程queue和线程不是一个

from multiprocessing import Queue

线程queue

from queue import Queue,LifoQueue,PriorityQueue

线程间通信,因为共享变量会出现数据不安全问题,用线程queue通信,不需要加锁,内部自带
queue是线程安全的

三种线程Queue
-Queue:队列,先进先出
-PriorityQueue:优先级队列,谁小谁先出
-LifoQueue:栈,后进先出

如何使用

q=Queue(5)
q.put("lqz")
q.put("egon")
q.put("铁蛋")
q.put("钢弹")
q.put("金蛋")


# q.put("银蛋")
# q.put_nowait("银蛋")
# 取值
print(q.get())
print(q.get())
print(q.get())
print(q.get())
print(q.get())
# 卡住
# print(q.get())
# q.get_nowait()
# 是否满,是否空
print(q.full())
print(q.empty())

LifoQueue

q=LifoQueue(5)
q.put("lqz")
q.put("egon")
q.put("铁蛋")
q.put("钢弹")
q.put("金蛋")
#
# q.put("ddd蛋")
print(q.get())


PriorityQueue:数字越小,级别越高

q=PriorityQueue(3)
q.put((-10,'金蛋'))
q.put((100,'银蛋'))
q.put((101,'铁蛋'))
# q.put((1010,'铁dd蛋'))  # 不能再放了

print(q.get())
print(q.get())
print(q.get())

八、线程池

8.1 为什么会出现池?

不管是开进程还是开线程,不能无限制开,通过池,假设池子里就有10个,不管再怎么开,永远是这10个

8.2 如何使用

from concurrent.futures import ThreadPoolExecutor
pool = ThreadPoolExecutor(2)
pool.submit(get_pages, url).add_done_callback(call_back)
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
from threading import Thread
import time
import random

pool = ThreadPoolExecutor(5)  # 数字是池的大小
# pool = ProcessPoolExecutor(5)  # 数字是池的大小


def task(name):
    print('%s任务开始' % name)

    time.sleep(random.randint(1, 4))
    print('任务结束')
    return '%s 返回了'%name



def call_back(f):
    # print(type(f))
    print(f.result())
if __name__ == '__main__':

    # ll=[]
    # for i in range(10):  # 起了100个线程
    #     # t=Thread(target=task)
    #     # t.start()
    #     res = pool.submit(task, '屌丝男%s号' % i)  # 不需要再写在args中了
    #     # res是Future对象
    #     # from  concurrent.futures._base import Future
    #     # print(type(res))
    #     # print(res.result())  # 像join,只要执行result,就会等着结果回来,就变成串行了
    #     ll.append(res)
    #
    # for res in ll:
    #     print(res.result())

    # 终极使用
    for i in range(10):  # 起了100个线程
        # 向线程池中提交一个任务,等任务执行完成,自动回到到call_back函数执行
        pool.submit(task,'屌丝男%s号' % i).add_done_callback(call_back)
        

九、进程池

# 1 如何使用
from concurrent.futures import ProcessPoolExecutor
pool = ProcessPoolExecutor(2)
pool.submit(get_pages, url).add_done_callback(call_back)

你可能感兴趣的:(python从入门到到高阶,python,queue,thread)