A - Frog 1
思路:dp[i]: 青蛙跳到i位置最小cost,则动规公式:dp[i] = min{dp[i-1]+|hi-hi-1|,注意
代码:
#include
#include
#include
using namespace std;
const int MAXN = 10e5+10;
int N;
int h[MAXN];
int dp[MAXN];
int main() {
cin >> N;
for(int i=1; i<=N; i++) {
cin >> h[i];
}
memset(dp, 0x3f, sizeof(dp));
dp[1] = 0; dp[2] = abs(h[1]-h[2]);
for(int i=3; i<=N; i++) {
dp[i] = min({dp[i], dp[i-1]+abs(h[i]-h[i-1]), dp[i-2] + abs(h[i]-h[i-2])});
}
cout << dp[N] << endl;
return 0;
}
B - Frog 2
思路:dp[i] = min{dp[i-j] + |hi-hj|}, 1<=j<=k
代码:
#include
using namespace std;
const int MAXN = 10e5+10;
int N, K;
int h[MAXN];
int dp[MAXN];
int main() {
cin >> N >> K;
for(int i=1; i<=N; i++) {
cin >> h[i];
}
memset(dp, 0x3f, sizeof(dp));
dp[1] = 0;
for(int i=1; i<=N; i++) {
for(int j=1; j<=K; j++) {
dp[i+j] = min(dp[i+j], dp[i]+abs(h[i]-h[i+j]));
}
}
cout << dp[N] << endl;
return 0;
}
C - Vacation
思路:dp[i][0]: 第i天选A获得的最大幸福值
dp[i][0] = max{dp[i-1][1], dp[i-1][2]}+A[i],
dp[i][1] = max{dp[i-1][0], dp[i-1][2]}+B[i],
dp[i][2] = max{dp[i-1][0], dp[i-1][1]}+C[i],
ans = max{dp[N][0], dp[N][1], dp[N][2]}.
代码:
#include
using namespace std;
const int MAXN = 1e5+10;
using ll = long long;
int N;
int a[MAXN], b[MAXN], c[MAXN];
ll dp[MAXN][4];
int main() {
cin >> N;
for(int i=1; i<=N; i++) {
cin >> a[i] >> b[i] >> c[i];
}
memset(dp, 0, sizeof(dp));
for(int i=1; i<=N; i++) {
dp[i][0] = max(dp[i-1][1], dp[i-1][2]) + a[i];
dp[i][1] = max(dp[i-1][0], dp[i-1][2]) + b[i];
dp[i][2] = max(dp[i-1][0], dp[i-1][1]) + c[i];
}
ll ans = 0;
for(int i=0; i<3; i++) {
ans = max(ans, dp[N][i]);
}
cout << ans << endl;
return 0;
}
D - Knapsack 1
E - Knapsack 2
思路:两题都是经典背包问题,区别在于D的W<105而E的W<109。设dp[i][j]: 前i个物品占j重量能获得的最大价值,dp[i][j] = max{dp[i-1][j], dp[i-1][j-w[i]]+v[i]},发现dp[i][j]只跟dp[i-1]相关,因此可以去掉一维i把二维变一维。dp[j]:j重量所能获得的最大价值,dp[j] = max{dp[j], dp[j-w[i]]+v[i]}。但即便如此E还是会超时,因为W太大109必定超时。观察V很小103,因此可以循环V,dp[j]:j价值所能获得的最大重量,dp[j] = max{dp[j], dp[j-v[i]]+w[j]},循环时判断如果dp[j]
#include
using namespace std;
const int MAXN = 110;
const int MAXW = 1e5+10;
using ll = long long;
struct item {
int w, v;
};
item a[MAXN];
int N, W;
ll dp[MAXN][MAXW];
int main() {
cin >> N >> W;
for(int i=1; i<=N; i++) {
cin >> a[i].w >> a[i].v;
}
memset(dp, 0, sizeof(dp));
for(int i=1; i<=N; i++) {
for(int j=0; j<=W; j++) {
if(j-a[i].w<0) dp[i][j] = dp[i-1][j];
else dp[i][j] = max(dp[i-1][j], dp[i-1][j-a[i].w] + a[i].v);
}
}
ll ans = 0;
for(int j=1; j<=W; j++) {
ans = max(ans, dp[N][j]);
}
cout << ans << endl;
return 0;
}
E代码:
#include
using namespace std;
using ll = long long;
const int MAXN = 110;
const ll MAXW = 1e9+10;
const int MAXV = 1e5+10;
struct item {
ll w, v;
};
item a[MAXN];
int N, W;
ll dp[MAXV];
int main() {
cin >> N >> W;
ll s = 0;
for(int i=1; i<=N; i++) {
cin >> a[i].w >> a[i].v;
s += a[i].v;
}
ll ans = 0;
memset(dp, 0x3f, sizeof(dp));
dp[0] = 0;
for(int i=1; i<=N; i++) {
for(ll j=s; j>=a[i].v; j--) {
dp[j] = min(dp[j], dp[j-a[i].v] + a[i].w);
if(dp[j]<=W) ans = max(ans, j);
}
}
/*
for(int j=s; j>=0; j--) {
if(dp[j]<=W)
ans = max(ans, j);
}
*/
cout << ans << endl;
return 0;
}
F - LCS
思路:经典的最长公共子序列,dp[i][j]: S1前i个字串和S2前j个字串的最长公共子序列个数。
题目不是求lcs的数量,而是lcs的字串序列,因此需要辅助数组trace来记录操作结果。
代码:
#include
using namespace std;
const int N = 3010;
string s, t;
int trace[N][N];
int dp[N][N];
int main() {
cin >> s >> t;
int n = s.length();
int m = t.length();
for(int i=0; i<=n; i++) {
dp[i][0] = 0;
}
for(int j=0; j<=m; j++) {
dp[0][j] = 0;
}
for(int i=1; i<=n; i++) {
for(int j=1; j<=m; j++) {
if(s[i-1]==t[j-1]) {
trace[i][j] = 0;
dp[i][j] = dp[i-1][j-1] + 1;
}else {
if(dp[i-1][j]>dp[i][j-1]) {
trace[i][j] = 1;
dp[i][j] = dp[i-1][j];
}else {
trace[i][j] = 2;
dp[i][j] = dp[i][j-1];
}
}
}
}
string ans;
while(n && m) {
// printf("%d, %d : %d\n", n, m, trace[n][m]);
if(trace[n][m] == 0) {
ans.push_back(s[n-1]);
--n; --m;
}else if(trace[n][m] == 1) {
--n;
}else if(trace[n][m] == 2) {
--m;
}
}
reverse(ans.begin(), ans.end());
cout << ans << endl;
return 0;
}
/*
// memorize dp
int lcs(int n, int m) {
if(n==0 || m == 0) return 0;
if(dp[n][m]) return dp[n][m];
if(s[n-1] == t[m-1]) {
trace[n][m] = 0;
dp[n][m] = lcs(n-1, m-1)+1;
}else {
int a = lcs(n-1, m);
int b = lcs(n, m-1);
// printf("%d, %d : %d, %d\n", n, m, a, b);
if(a>b) {
dp[n][m] = a;
trace[n][m] = 1;
}else {
dp[n][m] = b;
trace[n][m] = 2;
}
}
return dp[n][m];
}
int main() {
cin >> s >> t;
int n = s.length();
int m = t.length();
memset(dp, 0, sizeof(dp));
lcs(n, m);
string ans;
while(n && m) {
// printf("%d, %d : %d\n", n, m, trace[n][m]);
if(trace[n][m] == 0) {
ans.push_back(s[n-1]);
--n; --m;
}else if(trace[n][m] == 1) {
--n;
}else if(trace[n][m] == 2) {
--m;
}
}
reverse(ans.begin(), ans.end());
cout << ans << endl;
return 0;
}
*/
G - Longest Path
思路:求图的最长路径,最先想到枚举每个顶点到其他顶点的路径,找最大值,时间复杂度O(N*M),按照题目给的105肯定超时。其实很容易想到枚举时必然有重复求解,可以用memorized DP方法降低复杂度,最终复杂度O(N+M)。
代码:
#include
using namespace std;
using LL = long long;
const int MAXN = 100100;
int N, M;
vector g[MAXN];
int ans;
int dp[MAXN];
int dfs(int v) {
if(dp[v]) return dp[v];
for(int u=0; u
H - Grid 1
题目大意:求迷宫中从左上角到右下角路径个数。
思路:dp[x][y] = dp[x-1][y] + dp[x][y-1]
代码:
#include
using namespace std;
using ll = long long;
#define MAXH 1010
#define MAXW 1010
const int MOD = 1e9+7;
int H, W;
char g[MAXH][MAXW];
int dx[] = {1, 0};
int dy[] = {0, 1};
int dp[MAXH][MAXW];
void debug() {
for(int i=1; i<=H; i++) {
for(int j=1; j<=W; j++) {
cout << dp[i][j];
}
cout << endl;
}
}
int main() {
cin >> H >> W;
for(int i=1; i<=H; i++) {
for(int j=1; j<=W; j++) {
cin >> g[i][j];
}
}
memset(dp, 0, sizeof(dp));
for(int i=1; i<=H; i++) {
for(int j=1; j<=W; j++) {
if(i==1&&j==1){
dp[i][j] = 1;
continue;
}
if(g[i][j] == '#')
dp[i][j] = 0;
else
dp[i][j] = (dp[i-1][j] + dp[i][j-1])%MOD;
}
}
cout << dp[H][W] << endl;
// debug();
return 0;
}
I - Coins
思路:dp[i][j]: 掷前i个硬币有j个面朝上的概率,则dp[i][j] = dp[i-1][j-1]*pj + dp[i-1][j]*(1-pj),最后.
代码:
#include
using namespace std;
const int MAXN = 3010;
using ll = long long;
int N;
double p[MAXN];
// dp[i][j]: 前i个硬币j个头朝上的概率
double dp[MAXN][MAXN];
int main() {
cin >> N;
for(int i=1; i<=N; i++) {
cin >> p[i];
}
dp[0][0] = 1;
for(int i=1; i<=N; i++) {
for(int j=0; j<=i; j++) {
if(j) dp[i][j] += dp[i-1][j-1]*p[i];
dp[i][j] += dp[i-1][j] * (1-p[i]);
}
}
double ans = 0.0;
for(int i=(N+1)/2; i<=N; i++) {
ans += dp[N][i];
}
cout <
J - Sushi
题目大意:有N个dishes,每个dish有1~3个sushi,求拿走所有sushi的操作期望值。
思路:dp状态的个数肯定不能选N,猜测3个状态x、y、z。x代表1个sushi的盘子个数,y代表2个sushi的盘子个数,z代表3个sushi的盘子个数,设dp(x, y, z)为当1个sushi的盘子有x个,2个sushi的盘子有y个,3个sushi的盘子有z个时操作期望值,则dp(x,y,z) = x/n * dp(x-1, y, z) + y/n * dp(x+1, y-1, z) + z/n * dp(x, y+1, z-1) + (n-x-y-z)/n * dp(x, y, z) + 1,共同项dp(x,y,z)移项后化简得到:dp(x,y,z)=x/(x+y+z)dp(x-1,y,z) + y/(x+y+z)dp(x+1,y-1,z) + z/(x+y+z)*dp(x,y+1,z-1) + n/(x+y+z)
代码:
#include
using namespace std;
const int MAXN = 310;
int N;
int a[MAXN];
double dp[MAXN][MAXN][MAXN];
int cnt[4];
double solve(int x, int y, int z) {
double ret;
if(x==0 && y==0 && z==0) return 0;
if(dp[x][y][z]>0.0) return dp[x][y][z];
int sum = x+y+z;
ret = 1.0*N/sum;
if(x>0) {
ret += 1.0*x/sum * solve(x-1, y, z);
}
if(y>0) {
ret += 1.0*y/sum * solve(x+1, y-1, z);
}
if(z>0) {
ret += 1.0*z/sum * solve(x, y+1, z-1);
}
return dp[x][y][z] = ret;
}
int main() {
cin >> N;
memset(cnt, 0, sizeof(cnt));
for(int i=1; i<=N; i++) {
cin >> a[i];
cnt[a[i]]++;
}
cout <