AbstractQueuedSynchronizer源码分析- CountDownLatch分析

项目中遇到一个这样的需求, 使用POS机对用户进行充值,且渠道实时知道充值结果在POS机显示. 但后端因为涉及第三方平台的调用, 第三方平台的结果异步通知, 所以后端无法给POS机同步响应结果, 解决这个问题的方案有两种.

  1. 后端提供两个接口, 下单接口与查询接口, POS机调用下单接口之后, 轮询调用查询接口, 查询最终结果, 若规定时间(根据业务需求而定)一直没有终态, 显示处理中, 提示最终结果会已push, 短信通知或人工处理.
  2. 后端只提供一个下单接口, 再后端使用CountDownLatch对异步进行同步化, 下面我们主要分析这种方法

先上代码

 public CreateTradeRspDTO createTrade(CreateTradeReqDTO createTradeReqDTO) {
       // 省略下单操作
     
      // 异步同步化 
       final CountDownLatch countDown = new CountDownLatch(1);
      // 使用线程池创建线程执行订单结果查询
      // 我们服务调用使用dubbo, 超时时间设置5s, 所以CHECK_ACCOUNT_TIMES设置为8
      // 最多进行查询8次, 每次0.5s, 如果8次也没有查询到最终结果, 也会执行countDown.countDown();
       ThreadPoolExecutorUtil.execute(() -> {
            for (int i = 0; i < CHECK_ACCOUNT_TIMES; i++) { 
                try {
                    TimeUnit.MILLISECONDS.sleep(500);
                    // 查询数据库中订单结果
                   ChannelFlowBO bo= channelFlowService.selectByOrderNo(orderNo);
                    // 有终态跳出循环, 否则一直循环
                    if(FlowStatusEnum.SUCCESS == bo.getFlowStatus || FlowStatusEnum.FALS== bo.getFlowStatus) {
                            // 省略设置订单状态
                            break;                    
                    } 
                } catch (Exception e) {
                    log.warn("**************************查询报错******************", e);
                }
            }
            countDown.countDown();
        });
        try {
            // 这一步需要在线程执行后面, 如果 countDown.await()放在线程执行前面, 程序会卡死
            countDown.await();
        } catch (Exception e) {
            log.error("*****************CountDownLatch异常*****", e);
        }
          // 省略下单返回数据
    }

经过上面的预热, 下面现在开始对CountDownLatch进行分析

CountDownLatch

CountDownLatch.png

CountDownLatch原理是创建是指定state的值, 然后调用await挂起线程, 后续每调用移除countDown,state-1,当state值为0时, 唤醒线程. 下面进行源码分析.

  @Test
    public void testCountDownLatch() throws InterruptedException {

        final CountDownLatch downLatch = new CountDownLatch(2);
        new Thread(() -> {
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            downLatch.countDown();
            System.out.println("执行第一次countDown");
        }).start();
        new Thread(() -> {
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            downLatch.countDown();
            System.out.println("执行第二次countDown");
        }).start();

        downLatch.await();
        System.out.println("线程放行");

    }
执行结果.png

await分析

 // 创建过程很简单, 就是为state设置值
 public CountDownLatch(int count) {
        if (count < 0) throw new IllegalArgumentException("count < 0");
        this.sync = new Sync(count);
    }
 Sync(int count) {
            setState(count);
  }

// await开始
public void await() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
}

 public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted()) 
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }
  // 只有当 state == 0 的时候,这个方法才会返回 1,否则返回-1
 protected int tryAcquireShared(int acquires) {
            return (getState() == 0) ? 1 : -1;
 }

private void doAcquireSharedInterruptibly(int arg)
        throws InterruptedException {
        // 对head进行延时初始化, 将node设置为tail
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg); 
                    if (r >= 0) { 
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                // 这下面之前分析
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

创建CountDownLatch与await操作不难理解, 只要看过上一篇AbstractQueuedSynchronizer源码分析- ReentrantLock抢锁解锁就能很快理解.

countDown分析

  public void countDown() {
        sync.releaseShared(1);
    }
 public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }

 // 对state -1 操作, 若state-1 == 0返回true,否则返回false
 protected boolean tryReleaseShared(int releases) {
            for (;;) {
                int c = getState();
                if (c == 0)
                    return false;
                int nextc = c-1;
                if (compareAndSetState(c, nextc))
                    return nextc == 0;
            }
 }
  
 //  tryReleaseShared方法返回true进行下面操作
 private void doReleaseShared() {
        for (;;) {
            Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                if (ws == Node.SIGNAL) {
                    // 将ws设置为0, 然后唤醒线程h
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;           
                    unparkSuccessor(h);
                }
                else if (ws == 0 &&
                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;                // loop on failed CAS
            }
            if (h == head)                   // loop if head changed
                break;
        }
    }

private void doAcquireSharedInterruptibly(int arg)
        throws InterruptedException {
        // 对head进行延时初始化, 将node设置为tail
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    //此时state为0, r为1
                    int r = tryAcquireShared(arg); 
                    if (r >= 0) { 
                       // 开始执行这里
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())     // 唤醒线程之后会接着执行这一步
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

private void setHeadAndPropagate(Node node, int propagate) {
        Node h = head; // Record old head for check below
        setHead(node);
       
        if (propagate > 0 || h == null || h.waitStatus < 0 ||
            (h = head) == null || h.waitStatus < 0) {
            Node s = node.next;
            if (s == null || s.isShared())
                // 又是执行这个方法, 唤醒线程
                doReleaseShared();
        }
    }

CountDownLatch的countDown不难理解,每调用一次就对state-1, 当state为0时, 换新之前挂起的线程, 源码比较难已理解的地方就是setHeadAndPropagate中为什么还要再次执行doReleaseShared(), 下面有一种Debug图解来分析一下.

CountDownLatch.await多次添加.png

唤醒操作.png

如上图所示, 若多次执行await操作, 会多次执行addWaiter方法在链表中添加n+1个node,当执行count操作导致state为0是, 会依次唤醒链表中node节点的线程, 执行对应任务.
总结
1.CountDownLatch在工作中还是经常用的, 模拟多线程并发下的接口测试, 异步同步化, 一个线程完成任务同时通知多个线程, 计算汇总等待问题.
2.CyclicBarrier,Semaphore源码与CountDownLach差不多,用空对这两个类进行一下源码解读.

你可能感兴趣的:(AbstractQueuedSynchronizer源码分析- CountDownLatch分析)