Pytorch手动实现softmax回归

参考代码:https://blog.csdn.net/ccyyll1/article/details/126020585

softmax回归梯度计算方式,特别是i=j和i!= j时的计算问题,请看如下帖子中的描述,这个问题是反向传播梯度计算中的一个核心问题:反向传播梯度计算中的一个核心问题

直接上代码:

import torch  
import torchvision  
import torchvision.transforms as transforms  
import numpy as np  
#(2)下载并装载Fashion MNIST 数据集

mnist_train = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=True,   
download=True, transform=transforms.ToTensor())  
mnist_test = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=False,   
download=True, transform=transforms.ToTensor())  
#(3)构建迭代器

batch_size = 256  
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True)  
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False) 
#(4)初始化学习参数

#初始化学习参数  
num_inputs = 784  
num_outputs = 10  
w = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_outputs)), dtype=torch.float)  
b = torch.zeros(num_outputs, dtype=torch.float)  
w.requires_grad_(requires_grad=True)  
b.requires_grad_(requires_grad=True) 
#(5)定义相关函数

#定义Softmax决策函数  
def softmax(x,w,b):  
    y = torch.mm(x.view(-1, num_inputs), w) + b  
    y_exp = y.exp()  
    y_sum = y_exp.sum(dim=1, keepdim=True)  
    return y_exp / y_sum  
#定义交叉熵损失函数  
def cross_entropy(y_hat, y):  
    #其中gather()就相当于是维度级高级的矩阵索引;并且真实值向量y中其他类别都为0所以不用考虑  
    return - torch.log(y_hat.gather(1, y.view(-1, 1)))  
#定义梯度下降优化函数  
def sgd(params, lr, batch_size):  
    for param in params:  
        param.data -= lr * param.grad / batch_size  
#定义分类准确率  
def accuracy(y_hat, y):  
    return (y_hat.argmax(dim=1) == y).float().mean().item()  
#模型未训练前的准确率  
def evaluate_accuracy(data_iter, net):  
    acc_sum, n = 0.0, 0  
    for X, y in data_iter:  
        acc_sum += (net(X , w ,b).argmax(dim=1) == y).float().sum().item()  
        n += y.shape[0]  
    return acc_sum / n  
#(6)开始训练并计算每轮损失

#开始训练并计算每轮损失  
lr = 0.01  
num_epochs = 20  
net = softmax  
loss = cross_entropy  
for epoch in range(num_epochs):  
    train_l_sum, train_acc_sum, n = 0.0, 0.0, 0  
    for X, Y in train_iter:  
        l = loss(net(X, w, b), Y).sum()  
        l.backward()  
        sgd([w, b], lr, batch_size)  
        w.grad.data.zero_()  
        b.grad.data.zero_()  
        train_l_sum += l.item()  
        train_acc_sum += (net(X, w, b).argmax(dim=1) == Y).sum().item()  
        n += Y.shape[0]  
    test_acc = evaluate_accuracy(test_iter, net)  
    print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'  
              % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))  

执行结果:

Pytorch手动实现softmax回归_第1张图片

你可能感兴趣的:(回归,数据挖掘,人工智能)