英文版文档:https://fastapi.tiangolo.com/
中文版文档:https://fastapi.tiangolo.com/zh/
Python 高性能 web 框架 - FastApi 全面指南:https://zhuanlan.zhihu.com/p/397029492
FastAPI:Python 世界里最受欢迎的异步框架:https://www.cnblogs.com/traditional/p/14733610.html
FastAPI 站在巨人的肩膀上?
很大程度上来说,这个巨人就是指 Flask 框架。
FastAPI 从语法上和 Flask 非常的相似,有异曲同工之妙。
其实不仅仅是 FastAPI ,就连 Sanic 也是基于 Flask 快速开发的 Web API 框架。
FastAPI 是一个用于构建 API 的现代、快速(高性能)的 web 框架,使用 Python 3.6+ 并基于标准的 Python 类型提示。
它具有如下这些优点:
pip install fastapi
pip install uvicorn
创建一个 main.py
文件并写入以下内容:
from typing import Optional
from fastapi import FastAPI
app = FastAPI()
@app.get("/")
def read_root():
return {"Hello": "World"}
@app.get("/items/{item_id}")
def read_item(item_id: int, q: Optional[str] = None):
return {"item_id": item_id, "q": q}
FastAPI 推荐使用 uvicorn 来运行服务,Uvicorn 是基于uvloop 和 httptools 构建的闪电般快速的 ASGI 服务器。
启动服务器:uvicorn main:app --reload
INFO 信息告诉我们已经监听了本地的 8000 端口,访问 http://127.0.0.1:8000 得到结果
访问 URL:http://127.0.0.1:8000/items/5?q=somequery,你将会看到如下 JSON 响应:
{"item_id": 5, "q": "somequery"}访问URL:http://127.0.0.1:8000/docs 你会看到自动生成的交互式 API 文档,由Swagger UI 生成:
访问URL:http://127.0.0.1:8000/redoc 你会看到另一个自动生成的文档(由ReDoc生成):
from fastapi import FastAPI
app = FastAPI() # 创建 api 对象
@app.get("/") # 根路由
async def root():
return {"武汉": "加油!!!"}
@app.get("/say/{data}")
async def say(data: str, q: int = None):
return {"data": data, "q": q}
示例:
from fastapi import FastAPI
app = FastAPI()
fake_items_db = [{"item_name": "Foo"}, {"item_name": "Bar"}, {"item_name": "Baz"}]
@app.get("/items/")
async def read_item(skip: int = 0, limit: int = 10):
return fake_items_db[skip: skip + limit]
该查询是 ? URL中位于关键字之后的一组键值对,以&字符分隔。
在 url 中进行查询:http://127.0.0.1:8000/items/?skip=0&limit=10
skip:查询的起始参数
limit:查询的结束参数
查询参数类型转换。FastAPI 非常聪明,足以辨别 路径参数 和 查询参数。
使用与 Python 格式化字符串相同的语法来声明路径"参数"或"变量":
来看看具体的例子:
from fastapi import FastAPI
app = FastAPI()
@app.get("/items/{item_id}")
async def read_item(item_id: str, q: str = None, short: bool = False):
item = {"item_id": item_id}
if q:
item.update({"q": q})
if not short:
item.update(
{"description": "This is an amazing item that has a long description"}
)
return item
路径参数 item_id 的值将作为参数 item_id 传递给你的函数。声明不属于路径参数的其他函数参数时,它们将被自动解释为 "查询字符串" 参数:
看看其访问路径,执行以下的任何一种 url 访问方式
http://127.0.0.1:8000/items/老王睡隔壁?short=1
http://127.0.0.1:8000/items/老王睡隔壁?short=True
http://127.0.0.1:8000/items/老王睡隔壁?short=true
http://127.0.0.1:8000/items/老王睡隔壁?short=on
http://127.0.0.1:8000/items/老王睡隔壁?short=yes
可以发现任何大小写的字母等都会被转换成 bool 值的参数 True,这就是所谓模糊验证参数,对于开发者来说是个好消息。注意:如果 short 参数没有默认值,则必须传参,否则 FastAPI 将报错。
{
"detail": [
{
"loc": [
"query",
"needy"
],
"msg": "field required",
"type": "value_error.missing"
}
]
}
示例 2:
from fastapi import FastAPI
app = FastAPI()
fake_items_db = [{"item_name": "Foo"}, {"item_name": "Bar"}, {"item_name": "Baz"}]
@app.get("/items/")
async def read_item(skip: int = 0, limit: int = 10):
return fake_items_db[skip : skip + limit]
查询字符串是键值对的集合,这些键值对位于 URL 的 ? 之后,并以 &符号 分隔。
可以使用 Query 对查询进行额外的校验:
from typing import Optional
from fastapi import FastAPI, Query
app = FastAPI()
@app.get("/items/")
async def read_items(q: Optional[str] = Query(None, max_length=50)):
results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]}
if q:
results.update({"q": q})
return results
Query 有如下这些字段校验:
...
表示是必需的Path 和 Query 用法一样,也能对查询字段进行校验。
而且你还可以声明数值校验:
from fastapi import FastAPI, Path, Query
app = FastAPI()
@app.get("/items/{item_id}")
async def read_items(
*,
item_id: int = Path(..., title="The ID of the item to get", ge=0, le=1000),
q: str,
size: float = Query(..., gt=0, lt=10.5)
):
results = {"item_id": item_id}
if q:
results.update({"q": q})
return results
gt
:大于ge
:大于等于lt
:小于le
:小于等于类似的还有 Cookie:
from typing import Optional
from fastapi import Cookie, FastAPI
app = FastAPI()
@app.get("/items/")
async def read_items(ads_id: Optional[str] = Cookie(None)):
return {"ads_id": ads_id}
以及Header:
from typing import Optional
from fastapi import FastAPI, Header
app = FastAPI()
@app.get("/items/")
async def read_items(user_agent: Optional[str] = Header(None)):
return {"User-Agent": user_agent}
创建数据模型
FastAPI 依赖 Pydantic 模块,需要导入 Pydantic 的 BaseModel 类。
from fastapi import FastAPI
from pydantic import BaseModel
# 请求主体类
class Item(BaseModel):
name: str = "武汉加油 !!"
description: str = None
price: float = 233
tax: float = None
app = FastAPI()
@app.post("/items/")
async def create_item(item: Item):
return item
发送 post 请求来提交一个 Item(请求主体) 并返回,来看看提交过程。
请求主体+路径+查询参数,在请求主体的基础上加入 url 动态路径参数 和 查询参数
from fastapi import FastAPI
from pydantic import BaseModel
class Item(BaseModel):
name: str
description: str = None
price: float
tax: float = None
app = FastAPI()
@app.put("/items/{item_id}")
async def create_item(item_id: int, item: Item, q: str = None):
result = {"item_id": item_id, **item.dict()}
if q:
result.update({"q": q})
return result
关于模板引擎
FastAPI 不像 Flask 那样自带 模板引擎(Jinja2),也就是说没有默认的模板引擎,从另一个角度上说,FastAPI 在模板引擎的选择上变得更加灵活,极度舒适。
以 Jinja2 模板为例,安装依赖
pip install jinja2
pip install aiofiles # 用于 fastapi 的异步静态文件
# -*- coding:utf-8 -*-
from fastapi import FastAPI, Request
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
import uvicorn
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static") # 挂载静态文件,指定目录
templates = Jinja2Templates(directory="templates") # 模板目录
@app.get("/data/{data}")
async def read_data(request: Request, data: str):
return templates.TemplateResponse("index.html", {"request": request, "data": data})
if __name__ == '__main__':
uvicorn.run(app, host="127.0.0.1", port=8000)
html 文件渲染
士可杀不可辱(you can kill me, but you can't fuck me)
高呼: {{ data }}
在浏览器键入 http://127.0.0.1:8000/data/士可杀不可辱
值得注意的是,在返回的 TemplateRespone 响应时,必须带上 request 的上下文对象,传入参数放在同一字典。这样一来,又可以像 Flask 一样的使用 Jinja2。
为路径设置 tags 标签进行分组:
from typing import Optional, Set
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str
description: Optional[str] = None
price: float
tax: Optional[float] = None
tags: Set[str] = []
@app.post("/items/", response_model=Item, tags=["items"])
async def create_item(item: Item):
return item
@app.get("/items/", tags=["items"])
async def read_items():
return [{"name": "Foo", "price": 42}]
@app.get("/users/", tags=["users"])
async def read_users():
return [{"username": "johndoe"}]
还可以设置 summary 和 description:
from typing import Optional, Set
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str
description: Optional[str] = None
price: float
tax: Optional[float] = None
tags: Set[str] = []
@app.post(
"/items/",
response_model=Item,
summary="Create an item",
description="Create an item with all the information, name, description, price, tax and a set of unique tags",
)
async def create_item(item: Item):
return item
多行注释:
from typing import Optional, Set
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str
description: Optional[str] = None
price: float
tax: Optional[float] = None
tags: Set[str] = []
@app.post("/items/", response_model=Item, summary="Create an item")
async def create_item(item: Item):
"""
Create an item with all the information:
- **name**: each item must have a name
- **description**: a long description
- **price**: required
- **tax**: if the item doesn't have tax, you can omit this
- **tags**: a set of unique tag strings for this item
"""
return item
废弃路由:
from fastapi import FastAPI
app = FastAPI()
@app.get("/items/", tags=["items"])
async def read_items():
return [{"name": "Foo", "price": 42}]
@app.get("/users/", tags=["users"])
async def read_users():
return [{"username": "johndoe"}]
@app.get("/elements/", tags=["items"], deprecated=True)
async def read_elements():
return [{"item_id": "Foo"}]
使用 response_model
参数来声明用于响应的模型:
from typing import List, Optional
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str
description: Optional[str] = None
price: float
tax: Optional[float] = None
tags: List[str] = []
@app.post("/items/", response_model=Item)
async def create_item(item: Item):
return item
response_model_exclude_unset=True
:响应中将不会包含那些默认值,而是仅有实际设置的值response_model_include
包含哪些属性response_model_exclude
省略某些属性status_code
参数来声明用于响应的 HTTP 状态码:
from fastapi import FastAPI
app = FastAPI()
@app.post("/items/", status_code=201)
async def create_item(name: str):
return {"name": name}
表单字段时,要使用Form
:
from fastapi import FastAPI, Form
app = FastAPI()
@app.post("/login/")
async def login(username: str = Form(...), password: str = Form(...)):
return {"username": username}
File
用于定义客户端的上传文件(接收上传文件,要预先安装python-multipart
):
from fastapi import FastAPI, File, UploadFile
app = FastAPI()
@app.post("/files/")
async def create_file(file: bytes = File(...)):
return {"file_size": len(file)}
@app.post("/uploadfile/")
async def create_upload_file(file: UploadFile = File(...)):
return {"filename": file.filename}
向客户端返回 HTTP 错误响应,可以使用HTTPException
。
from fastapi import FastAPI, HTTPException
app = FastAPI()
items = {"foo": "The Foo Wrestlers"}
@app.get("/items/{item_id}")
async def read_item(item_id: str):
if item_id not in items:
raise HTTPException(status_code=404, detail="Item not found")
return {"item": items[item_id]}
使用response_description
设置响应描述:
from typing import Optional, Set
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str
description: Optional[str] = None
price: float
tax: Optional[float] = None
tags: Set[str] = []
@app.post(
"/items/",
response_model=Item,
summary="Create an item",
response_description="The created item",
)
async def create_item(item: Item):
"""
Create an item with all the information:
- **name**: each item must have a name
- **description**: a long description
- **price**: required
- **tax**: if the item doesn't have tax, you can omit this
- **tags**: a set of unique tag strings for this item
"""
return item
在某些情况下,你可能需要把数据(例如Pydantic模型)转换成JSON形式,例如存储在数据库中,这时候你就需要用到jsonable_encoder()
方法。
from datetime import datetime
from typing import Optional
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
fake_db = {}
class Item(BaseModel):
title: str
timestamp: datetime
description: Optional[str] = None
app = FastAPI()
@app.put("/items/{id}")
def update_item(id: str, item: Item):
json_compatible_item_data = jsonable_encoder(item)
fake_db[id] = json_compatible_item_data
FastAPI 提供了简单易用,但功能强大的依赖注入系统,可以让开发人员轻松地把组件集成至FastAPI。
什么是「依赖注入」?
依赖注入是一种消除类之间依赖关系的设计模式。把有依赖关系的类放到容器中,解析出这些类的实例,就是依赖注入。目的是实现类的解耦。
示例:
from typing import Optional
from fastapi import Depends, FastAPI
app = FastAPI()
async def common_parameters(q: Optional[str] = None, skip: int = 0, limit: int = 100):
return {"q": q, "skip": skip, "limit": limit}
@app.get("/items/")
async def read_items(commons: dict = Depends(common_parameters)):
return commons
@app.get("/users/")
async def read_users(commons: dict = Depends(common_parameters)):
return commons
本例中的依赖项预期接收如下参数:
str
的可选查询参数 q
int
的可选查询参数 skip
,默认值是 0
int
的可选查询参数 limit
,默认值是 100
然后,依赖项函数返回包含这些值的 dict
。
使用Class作为依赖:
from typing import Optional
from fastapi import Depends, FastAPI
app = FastAPI()
fake_items_db = [{"item_name": "Foo"}, {"item_name": "Bar"}, {"item_name": "Baz"}]
class CommonQueryParams:
def __init__(self, q: Optional[str] = None, skip: int = 0, limit: int = 100):
self.q = q
self.skip = skip
self.limit = limit
@app.get("/items/")
async def read_items(commons: CommonQueryParams = Depends(CommonQueryParams)):
response = {}
if commons.q:
response.update({"q": commons.q})
items = fake_items_db[commons.skip: commons.skip + commons.limit]
response.update({"items": items})
return response
使用嵌套子依赖:
from typing import Optional
from fastapi import Cookie, Depends, FastAPI
app = FastAPI()
def query_extractor(q: Optional[str] = None):
return q
def query_or_cookie_extractor(
q: str = Depends(query_extractor), last_query: Optional[str] = Cookie(None)
):
if not q:
return last_query
return q
@app.get("/items/")
async def read_query(query_or_default: str = Depends(query_or_cookie_extractor)):
return {"q_or_cookie": query_or_default}
在路径中使用依赖:
from fastapi import Depends, FastAPI, Header, HTTPException
app = FastAPI()
async def verify_token(x_token: str = Header(...)):
if x_token != "fake-super-secret-token":
raise HTTPException(status_code=400, detail="X-Token header invalid")
async def verify_key(x_key: str = Header(...)):
if x_key != "fake-super-secret-key":
raise HTTPException(status_code=400, detail="X-Key header invalid")
return x_key
@app.get("/items/", dependencies=[Depends(verify_token), Depends(verify_key)])
async def read_items():
return [{"item": "Foo"}, {"item": "Bar"}]
全局依赖项,可以为所有路径操作应用该依赖项:
from fastapi import Depends, FastAPI, Header, HTTPException
async def verify_token(x_token: str = Header(...)):
if x_token != "fake-super-secret-token":
raise HTTPException(status_code=400, detail="X-Token header invalid")
async def verify_key(x_key: str = Header(...)):
if x_key != "fake-super-secret-key":
raise HTTPException(status_code=400, detail="X-Key header invalid")
return x_key
app = FastAPI(dependencies=[Depends(verify_token), Depends(verify_key)])
@app.get("/items/")
async def read_items():
return [{"item": "Portal Gun"}, {"item": "Plumbus"}]
@app.get("/users/")
async def read_users():
return [{"username": "Rick"}, {"username": "Morty"}]
在许多框架和系统中,仅处理安全性和身份认证就会花费大量的精力和代码(在许多情况下,可能占编写的所有代码的 50% 或更多)。
FastAPI 提供了多种工具,可帮助你以标准的方式轻松、快速地处理安全性,而无需研究和学习所有的安全规范。
JWT 表示 「JSON Web Tokens」。
它是一个将 JSON 对象编码为密集且没有空格的长字符串的标准。字符串看起来像这样:
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c
它没有被加密,因此任何人都可以从字符串内容中还原数据。
但它经过了签名。因此,当你收到一个由你发出的令牌时,可以校验令牌是否真的由你发出。
通过这种方式,你可以创建一个有效期为 1 周的令牌。然后当用户第二天使用令牌重新访问时,你知道该用户仍然处于登入状态。
一周后令牌将会过期,用户将不会通过认证,必须再次登录才能获得一个新令牌。而且如果用户(或第三方)试图修改令牌以篡改过期时间,你将因为签名不匹配而能够发觉。
OAuth2
OAuth2是一个规范,它定义了几种处理身份认证和授权的方法。
它是一个相当广泛的规范,涵盖了一些复杂的使用场景。
它包括了使用「第三方」进行身份认证的方法。
这就是所有带有「使用 Facebook,Google,Twitter,GitHub 登录」的系统背后所使用的机制。
下面演示了如何使用OAuth2 和 JWT进行用户验证。
from datetime import datetime, timedelta
from typing import Optional
from fastapi import Depends, FastAPI, HTTPException, status
from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm
from jose import JWTError, jwt
from passlib.context import CryptContext
from pydantic import BaseModel
# to get a string like this run:
# openssl rand -hex 32
SECRET_KEY = "09d25e094faa6ca2556c818166b7a9563b93f7099f6f0f4caa6cf63b88e8d3e7"
ALGORITHM = "HS256"
ACCESS_TOKEN_EXPIRE_MINUTES = 30
fake_users_db = {
"johndoe": {
"username": "johndoe",
"full_name": "John Doe",
"email": "[email protected]",
"hashed_password": "$2b$12$EixZaYVK1fsbw1ZfbX3OXePaWxn96p36WQoeG6Lruj3vjPGga31lW",
"disabled": False,
}
}
class Token(BaseModel):
access_token: str
token_type: str
class TokenData(BaseModel):
username: Optional[str] = None
class User(BaseModel):
username: str
email: Optional[str] = None
full_name: Optional[str] = None
disabled: Optional[bool] = None
class UserInDB(User):
hashed_password: str
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
app = FastAPI()
def verify_password(plain_password, hashed_password):
return pwd_context.verify(plain_password, hashed_password)
def get_password_hash(password):
return pwd_context.hash(password)
def get_user(db, username: str):
if username in db:
user_dict = db[username]
return UserInDB(**user_dict)
def authenticate_user(fake_db, username: str, password: str):
user = get_user(fake_db, username)
if not user:
return False
if not verify_password(password, user.hashed_password):
return False
return user
def create_access_token(data: dict, expires_delta: Optional[timedelta] = None):
to_encode = data.copy()
if expires_delta:
expire = datetime.utcnow() + expires_delta
else:
expire = datetime.utcnow() + timedelta(minutes=15)
to_encode.update({"exp": expire})
encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)
return encoded_jwt
async def get_current_user(token: str = Depends(oauth2_scheme)):
credentials_exception = HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Could not validate credentials",
headers={"WWW-Authenticate": "Bearer"},
)
try:
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
username: str = payload.get("sub")
if username is None:
raise credentials_exception
token_data = TokenData(username=username)
except JWTError:
raise credentials_exception
user = get_user(fake_users_db, username=token_data.username)
if user is None:
raise credentials_exception
return user
async def get_current_active_user(current_user: User = Depends(get_current_user)):
if current_user.disabled:
raise HTTPException(status_code=400, detail="Inactive user")
return current_user
@app.post("/token", response_model=Token)
async def login_for_access_token(form_data: OAuth2PasswordRequestForm = Depends()):
user = authenticate_user(fake_users_db, form_data.username, form_data.password)
if not user:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Incorrect username or password",
headers={"WWW-Authenticate": "Bearer"},
)
access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES)
access_token = create_access_token(
data={"sub": user.username}, expires_delta=access_token_expires
)
return {"access_token": access_token, "token_type": "bearer"}
@app.get("/users/me/", response_model=User)
async def read_users_me(current_user: User = Depends(get_current_active_user)):
return current_user
@app.get("/users/me/items/")
async def read_own_items(current_user: User = Depends(get_current_active_user)):
return [{"item_id": "Foo", "owner": current_user.username}]
OAuth2PasswordBearer
:访问tokenUrl地址,获取token并返回OAuth2PasswordRequestForm
是一个类依赖项,声明了如下的请求表单:
username
password
scope
字段,是一个由空格分隔的字符串组成的大字符串grant_type
client_id
client_secret
"中间件"是一个函数,它在每个请求被特定的路径操作处理之前,以及在每个响应返回之前工作。
要创建中间件你可以在函数的顶部使用装饰器 @app.middleware("http")
.
中间件参数接收如下参数:
request
call_next
它将接收 request
作为参数
request
传递给相应的 路径操作response
response
前进一步修改它import time
from fastapi import FastAPI, Request
app = FastAPI()
@app.middleware("http")
async def add_process_time_header(request: Request, call_next):
start_time = time.time()
response = await call_next(request)
process_time = time.time() - start_time
response.headers["X-Process-Time"] = str(process_time)
return response
你可以在FastAPI应用中使用CORSMiddleware
来配置跨域:
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
app = FastAPI()
origins = [
"http://localhost.tiangolo.com",
"https://localhost.tiangolo.com",
"http://localhost",
"http://localhost:8080",
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
async def main():
return {"message": "Hello World"}
它支持以下参数:
allow_origins
- 一个允许跨域请求的源列表。例如 ['https://example.org', 'https://www.example.org']
。你可以使用 ['*']
允许任何源。allow_origin_regex
- 一个正则表达式字符串,匹配的源允许跨域请求。例如 'https://.*\.example\.org'
。allow_methods
- 一个允许跨域请求的 HTTP 方法列表。默认为 ['GET']
。你可以使用 ['*']
来允许所有标准方法。allow_headers
- 一个允许跨域请求的 HTTP 请求头列表。默认为 []
。你可以使用 ['*']
允许所有的请求头。Accept
、Accept-Language
、Content-Language
以及 Content-Type
请求头总是允许 CORS 请求。allow_credentials
- 指示跨域请求支持 cookies。默认是 False
。另外,允许凭证时 allow_origins
不能设定为 ['*']
,必须指定源。expose_headers
- 指示可以被浏览器访问的响应头。默认为 []
。max_age
- 设定浏览器缓存 CORS 响应的最长时间,单位是秒。默认为 600
。APIRouter
使用APIRouter同样也能对路由进行操作:
from fastapi import APIRouter
router = APIRouter()
@router.get("/users/", tags=["users"])
async def read_users():
return [{"username": "Rick"}, {"username": "Morty"}]
@router.get("/users/me", tags=["users"])
async def read_user_me():
return {"username": "fakecurrentuser"}
@router.get("/users/{username}", tags=["users"])
async def read_user(username: str):
return {"username": username}
为所有路径进行同样的操作:
from fastapi import APIRouter, Depends, HTTPException
from ..dependencies import get_token_header
router = APIRouter(
prefix="/items",
tags=["items"],
dependencies=[Depends(get_token_header)],
responses={404: {"description": "Not found"}},
)
fake_items_db = {"plumbus": {"name": "Plumbus"}, "gun": {"name": "Portal Gun"}}
@router.get("/")
async def read_items():
return fake_items_db
@router.get("/{item_id}")
async def read_item(item_id: str):
if item_id not in fake_items_db:
raise HTTPException(status_code=404, detail="Item not found")
return {"name": fake_items_db[item_id]["name"], "item_id": item_id}
@router.put(
"/{item_id}",
tags=["custom"],
responses={403: {"description": "Operation forbidden"}},
)
async def update_item(item_id: str):
if item_id != "plumbus":
raise HTTPException(
status_code=403, detail="You can only update the item: plumbus"
)
return {"item_id": item_id, "name": "The great Plumbus"}
该示例,就为所有的路径添加了前缀,标签、依赖和返回,而不用在每个路径上单独声明,简化了代码。
background tasks 就是在返回响应之后立即运行的任务。
from fastapi import BackgroundTasks, FastAPI
app = FastAPI()
def write_notification(email: str, message=""):
with open("log.txt", mode="w") as email_file:
content = f"notification for {email}: {message}"
email_file.write(content)
@app.post("/send-notification/{email}")
async def send_notification(email: str, background_tasks: BackgroundTasks):
background_tasks.add_task(write_notification, email, message="some notification")
return {"message": "Notification sent in the background"}
首先需要安装aiofiles:pip install aiofiles
使用:
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
如果你有2个独立的FastAPI的应用,你可以设置一个为主应用,另外一个为子应用:
from fastapi import FastAPI
app = FastAPI()
@app.get("/app")
def read_main():
return {"message": "Hello World from main app"}
subapi = FastAPI()
@subapi.get("/sub")
def read_sub():
return {"message": "Hello World from sub API"}
app.mount("/subapi", subapi)
可以使用root_path
来设置代理。
使用命令行:uvicorn main:app --root-path /api/v1
或者在代码中设置:
from fastapi import FastAPI, Request
app = FastAPI(root_path="/api/v1")
@app.get("/app")
def read_main(request: Request):
return {"message": "Hello World", "root_path": request.scope.get("root_path")}
你可以在FastAPI中使用任何模板,常用的选择是Jinja2。安装:pip install jinja2
使用:
from fastapi import FastAPI, Request
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
@app.get("/items/{id}", response_class=HTMLResponse)
async def read_item(request: Request, id: str):
return templates.TemplateResponse("item.html", {"request": request, "id": id})
模板文件templates/item.html
:
Item Details
Item ID: {{ id }}
from fastapi import FastAPI, WebSocket
from fastapi.responses import HTMLResponse
app = FastAPI()
html = """
Chat
WebSocket Chat
"""
@app.get("/")
async def get():
return HTMLResponse(html)
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
while True:
data = await websocket.receive_text()
await websocket.send_text(f"Message text was: {data}")
你可以设置应用的启动和关闭事件回调函数:
from fastapi import FastAPI
app = FastAPI()
items = {}
@app.on_event("shutdown")
def shutdown_event():
with open("log.txt", mode="a") as log:
log.write("Application shutdown")
@app.on_event("startup")
async def startup_event():
items["foo"] = {"name": "Fighters"}
items["bar"] = {"name": "Tenders"}
@app.get("/items/{item_id}")
async def read_items(item_id: str):
return items[item_id]
import requests
from scrapy.http import HtmlResponse
import uvicorn
from pathlib import Path
from fastapi import FastAPI
app = FastAPI()
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 "
"(KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62",
}
def douban_movie_top250(page_num: int):
index = (page_num - 1) * 25
# https://movie.douban.com/top250?start=50&filter=
url = f"https://movie.douban.com/top250?start={index}&filter="
__resp = requests.get(url, headers=headers)
if 200 == __resp.status_code:
resp = HtmlResponse(url, body=__resp.content, encoding='utf-8')
movie_name_list = resp.xpath('//div[@class="item"]//div[@class="hd"]/a/span[1]/text()').extract()
movie_url_list = resp.xpath('//div[@class="item"]//div[@class="hd"]/a/@href').extract()
movie_info_list = list(zip(movie_name_list, movie_url_list))
return movie_info_list
else:
return {'请求失败': f" status_code ---> {__resp.status_code}"}
@app.get("/douban/movie_top250")
async def get_item(page_num):
"""和 Flask 不同,Flask 是使用 <>,而 FastAPI 使用 {}"""
try:
page_num_int = int(page_num)
except BaseException as be:
return {"错误信息": "页码必须是数字"}
data = douban_movie_top250(page_num_int)
return {"data": data}
if __name__ == '__main__':
'''
http://127.0.0.1:5555/douban/movie_top250?page_num=1
'''
print(f'{Path(__file__).stem}:app')
uvicorn.run(f'{Path(__file__).stem}:app', host="0.0.0.0", port=5555)
pass
访问:http://127.0.0.1:5555/douban/movie_top250?page_num=5
import uvicorn
from pathlib import Path
from fastapi import FastAPI
import requests
import json
from scrapy.http import HtmlResponse
app = FastAPI()
headers = {
'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6',
'cookie': 'buvid3=31D606A5-C08F-CF7F-6345-DFE18CDF1FCA25535infoc; b_nut=1681180325; CURRENT_FNVAL=4048; _uuid=FA2D2910A-1F4C-9ED10-24FB-710C228FE726630982infoc; buvid_fp=dd9cac90362a92030f254a522e274486; buvid4=F13E840C-6245-40B7-9B63-5FDD1992821229542-023041110-0bxmZkxc4Ip6QXGeEfs0Og%3D%3D; CURRENT_PID=130742c0-d811-11ed-ac38-37fb01852f74; rpdid=|(JYYkY~RRYu0J\'uY)uk~lJY|; i-wanna-go-back=-1; header_theme_version=CLOSE; home_feed_column=5; is-2022-channel=1; nostalgia_conf=-1; DedeUserID=384760568; DedeUserID__ckMd5=8fd50449771672ee; b_ut=5; FEED_LIVE_VERSION=V_NO_BANNER_1; bsource=search_bing; browser_resolution=1863-969; bp_video_offset_384760568=787947892852654100; b_lsid=C105138DE_187B25E90A6; SESSDATA=d3f7b6a0%2C1697876752%2C413d0%2A42; bili_jct=e41d9dfdbd372b0cb95222cfa0d33199; sid=59e50ddx; innersign=1; PVID=1; innersign=1'
}
def get_subtitle(video_id=None):
if video_id:
url = f'https://www.bilibili.com/video/{video_id}/'
resp = requests.get(url, headers=headers)
if 200 == resp.status_code:
scrapy_resp = HtmlResponse(url, body=resp.content, encoding='utf-8')
try:
temp = scrapy_resp.css('html').re('"subtitle_url":"(.*?)"')[0]
except BaseException as be:
return {'请求失败': str(be)}
subtitle_url = temp.replace(r'\u002F', '/')
print(subtitle_url)
r = requests.get(subtitle_url)
if 200 == r.status_code:
return r.json()
else:
return {'请求失败, 失败状态码': resp.status_code}
else:
return {'请求失败, 失败状态码': resp.status_code}
else:
return {"请求失败": '视频 id 错误'}
@app.get("/bilibili/{video_id}")
async def get_item(video_id):
"""和 Flask 不同,Flask 是使用 <>,而 FastAPI 使用 {}"""
data = get_subtitle(video_id)
return {"data": data}
if __name__ == '__main__':
'''
http://127.0.0.1:5555/bilibili/BV1bW411n7fY
'''
print(f'{Path(__file__).stem}:app')
uvicorn.run(f'{Path(__file__).stem}:app', host="0.0.0.0", port=5555)
pass