Consider all integer combinations ofabfor 2a5 and 2b5:
2 2=4, 2 3=8, 2 4=16, 2 5=32
3 2=9, 3 3=27, 3 4=81, 3 5=243
4 2=16, 4 3=64, 4 4=256, 4 5=1024
5 2=25, 5 3=125, 5 4=625, 5 5=3125
If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
How many distinct terms are in the sequence generated byabfor 2a100 and 2b100?
题目大意:
考虑 ab 在 2 a 5,2 b 5下的所有整数组合:
2 2=4, 2 3=8, 2 4=16, 2 5=32
3 2=9, 3 3=27, 3 4=81, 3 5=243
4 2=16, 4 3=64, 4 4=256, 4 5=1024
5 2=25, 5 3=125, 5 4=625, 5 5=3125
如果将这些数字排序,并去除重复的,我们得到如下15个数字的序列:
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
ab 在 2 a 100,2 b 100 下生成的序列中有多少个不同的项?
算法设计(方法1):
1、将ab 进行因数分解,以字符串的形式保存,eg. 285 = (4 * 7)5 = (22 * 7)5 = 2^10*7^5
2、用一个结构体数组保存所有的数的因数分解表达式
3、对上述结构体数组排序
4、遍历此数组,找出不相同的项的总数
//(Problem 29)Distinct powers // Completed on Tue, 19 Nov 2013, 07:28 // Language: C // // 版权所有(C)acutus (mail: [email protected]) // 博客地址:http://www.cnblogs.com/acutus/ #include <stdio.h> #include <string.h> const int prim[25] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}; struct node { char list[100]; }num[9801]; int cmp(const void *a, const void *b) { return strcmp((*(struct node*)a).list, (*(struct node*)b).list); } char * explain(int a, int b) /*将a^b分解因数*/ { char s[100], ch; char *p; p = s; int t; for(int i = 0; i < 25; i++) { t = 0; while(a % prim[i] == 0) { if(t == 0) { sprintf(p,"%d",prim[i]); } a /= prim[i]; t++; } if(t > 0) { p = s + strlen(s); *p++ = '^'; t = t * b; sprintf(p,"%d",t); p = s + strlen(s); if(a != 1) { *p++ = '*'; } else { break; } } } return s; } void solve(void) { int i, j, k, sum; k = 0; for(i = 2; i < 101; i++) { for(j = 2; j < 101; j++) { strcpy(num[k++].list, explain(i,j)); } } qsort(num, 9801, sizeof(num[0]),cmp); sum = 1; for(i = 0; i < 9801; ) { j = i + 1; if(j >= 9801) break; while(strcmp(num[i].list, num[j].list) == 0) { j++; } i = j; sum ++; } printf("%d\n",sum); } int main(void) { solve(); return 0; }
算法设计(方法2):
仔细考察数字矩阵的规律,可以发现:
能够发生重复的数字,将他们因数分解以后,得到的指数的底都是相同的,e.g. 16与64……,在2~100中,能够发生重复数字的底只有4、8、16、32、64、9、27、81、25、36、49、81、100,于是可以在底为2的时候就排除掉以4、8、16、32、64为底的重复的数字。
#include<stdio.h> #include<stdbool.h> #include<stdlib.h> #define N 101 #define M 601 int main(void) { int answer = 0; int i, j, k, l; bool flag[M]; bool use[N] = {false}; for (i = 2; i < N; i++) { if (!use[i]) { int t = i; memset(flag, false, sizeof(flag)); for (j = 2; j < N; j++) { t = t * i; if (t >= N) { break; } use[t] = true; } for (k = 1; k < j; k++) { for (l = 2; l < N; l++) { flag[k*l] = true; } } for (k = 2; k < M; k++) { if(flag[k]){ answer++; } } } } printf("%d\n",answer); return 0; }
Answer:
|
9183 |