深度学习中标量,向量,矩阵和张量

1.标量(Scalar)

只有大小没有方向,可用实数表示的一个量

2.向量(Vector)

可以表示大小和方向的量

3.矩阵(Matrix)

m行n列,矩阵中的元素可以是数字也可以是符号,在深度学习中一般是二维数组

4.张量(Tensor)

用来表示一些向量、标量和其他张量之间的线性关系的多线性函数,这些线性关系可以是内积、外积、线性映射、或者笛卡尔积。张量通常是大于2维的数字表。

5.Representation

深度学习中标量,向量,矩阵和张量_第1张图片

 

你可能感兴趣的:(Deep,Learning,深度学习,矩阵,人工智能)