c++11线程池的实现原理及回调函数的使用

关于线程池

简单来说就是有一堆已经创建好的线程(最大数目一定),初始时他们都处于空闲状态。当有新的任务进来,从线程池中取出一个空闲的线程处理任务然后当任务处理完成之后,该线程被重新放回到线程池中,供其他的任务使用。当线程池中的线程都在处理任务时,就没有空闲线程供使用,此时,若有新的任务产生,只能等待线程池中有线程结束任务空闲才能执行。

线程池优点

线程本来就是可重用的资源,不需要每次使用时都进行初始化。因此可以采用有限的线程个数处理无限的任务。既可以提高速度和效率,又降低线程频繁创建的开销。比如要异步干的活,就没必要等待。丢到线程池里处理,结果在回调中处理。频繁执行的异步任务,若每次都创建线程势必造成不小的开销。像java中频繁执行的异步任务,就new Therad{}.start(),然后就不管了不是个好的办法,频繁调用可能会触发GC,带来严重的性能问题,类似这种就该使用线程池。

还比如把计算任务都放在主线程进行,那么势必会阻塞主线程的处理流程,无法做到实时处理。使用多线程技术是大家自然而然想到的方案。在上述的场景中必然会频繁的创建和销毁线程,这样的开销相信是不能接受的,此时线程池技术便是很好的选择。
另外在一些高并发的网络应用中,线程池也是常用的技术。陈硕大神推荐的C++多线程服务端编程模式为:one loop per thread + thread pool,通常会有单独的线程负责接受来自客户端的请求,对请求稍作解析后将数据处理的任务提交到专门的计算线程池。

实现原理及思路

大致原理是创建一个类,管理一个任务队列,一个线程队列。然后每次取一个任务分配给一个线程去做,循环往复。任务队列负责存放主线程需要处理的任务,工作线程队列其实是一个死循环,负责从任务队列中取出和运行任务,可以看成是一个生产者和多个消费者的模型。

c++11线程池的实现原理及回调函数的使用_第1张图片

c++11虽然加入了线程库thread,然而 c++ 对于多线程的支持还是比较低级,稍微高级一点的用法都需要自己去实现,还有备受期待的网络库,至今标准库里还没有支持,常用asio替代。感谢网上大神的奉献,这里贴上源码并完善下使用方法,主要是增加了使用示例及回调函数的使用。

使用举例

#include 
#include 
#include 
#include 
#include "threadpool.h"
using namespace std;
using namespace std::chrono;

//仿函数示例
struct gfun {
	int operator()(int n) {
		printf("%d  hello, gfun !  %d\n" ,n, std::this_thread::get_id() );
		return 42;
	}
};

class A { 
	public:
		static std::string Bfun(int n, std::string str, char c) {
			std::cout << n << "  hello, Bfun !  "<< str.c_str() <<"  " << (int)c <<"  " << std::this_thread::get_id() << std::endl;
			return str;
		}
};


int main() {

	cout << "hello,this is a test using threadpool" < > results;

	//lambada表达式 匿名函数线程中执行
	pool.commit([] {
			std::cout << "this is running in pool therad " << std::endl;
			std::this_thread::sleep_for(std::chrono::seconds(1));
			});

	//仿函数放到线程池中执行
	std::future fg = pool.commit(gfun{},0);	

	std::future gh = pool.commit(A::Bfun, 999,"mult args", 123);
	//回调函数示例,模拟耗时操作,结果回调输出
	auto fetchDataFromDB = [](std::string recvdData,std::function cback) {
		// Make sure that function takes 5 seconds to complete
		std::this_thread::sleep_for(seconds(5));
		//Do stuff like creating DB Connection and fetching Data
		if(cback != nullptr){
			std::string out = "this is from callback ";
			cback(out);
		}
		return "DB_" + recvdData;
	};

	//模拟,回调
	fetchDataFromDB("aaa",[&](std::string &result){
			std::cout << "callback result:" << result << std::endl;
			return 0;
			} );

	//把fetchDataFromDB这一IO耗时任务放到线程里异步执行
	//
	std::future resultFromDB = std::async(std::launch::async, fetchDataFromDB, "Data0",
			[&](std::string &result){
			std::cout << "callback result from thread:" << result << std::endl;
			return 0;
			});	


	//把fetchDataFromDB这一IO耗时操作放到pool中的效果
	pool.commit(fetchDataFromDB,"Data1",[&](std::string &result){
			std::cout << "callback result from pool thread:" << result << std::endl;
			return 0;
			});


	for(int i = 0; i < 8; ++i) {
		results.emplace_back(
				pool.commit([i] {
					std::cout << "hello " << i << std::endl;
					std::this_thread::sleep_for(std::chrono::seconds(1));
					std::cout << "world " << i << std::endl;
					return i*i;
					})
				);
	}

	for(auto && result: results){
		std::cout << result.get() << ' ';
	}
	std::cout << std::endl;
}

以下是具体实现过程: 

#pragma once
#ifndef THREAD_POOL_H
#define THREAD_POOL_H

#include 
#include 
#include 
#include 
//#include 
//#include 
#include 
#include 

namespace me
{
  using namespace std;
//线程池最大容量,应尽量设小一点
#define  THREADPOOL_MAX_NUM 16
//#define  THREADPOOL_AUTO_GROW

//线程池,可以提交变参函数或拉姆达表达式的匿名函数执行,可以获取执行返回值
//不直接支持类成员函数, 支持类静态成员函数或全局函数,Opteron()函数等
class ThreadPool
{
    using Task = function;    //定义类型
    vector _pool;     //线程池
    queue _tasks;            //任务队列
    mutex _lock;                   //同步
    condition_variable _task_cv;   //条件阻塞
    atomic _run{ true };     //线程池是否执行
    atomic  _idlThrNum{ 0 };  //空闲线程数量

public:
    inline ThreadPool(unsigned short size = 4) { addThread(size); }
    inline ~ThreadPool()
    {
        _run=false;
        _task_cv.notify_all(); // 唤醒所有线程执行
        for (thread& thread : _pool) {
            //thread.detach(); // 让线程“自生自灭”
            if(thread.joinable())
                thread.join(); // 等待任务结束, 前提:线程一定会执行完
        }
    }

public:
    // 提交一个任务
    // 调用.get()获取返回值会等待任务执行完,获取返回值
    // 有两种方法可以实现调用类成员,
    // 一种是使用   bind: .commit(std::bind(&Dog::sayHello, &dog));
    // 一种是用   mem_fn: .commit(std::mem_fn(&Dog::sayHello), this)
    template
    auto commit(F&& f, Args&&... args) ->future
    {
        if (!_run)    // stoped ??
            throw runtime_error("commit on ThreadPool is stopped.");

        using RetType = decltype(f(args...)); // typename std::result_of::type, 函数 f 的返回值类型
        auto task = make_shared>(
            bind(forward(f), forward(args)...)
        ); // 把函数入口及参数,打包(绑定)
        future future = task->get_future();
        {    // 添加任务到队列
            lock_guard lock{ _lock };//对当前块的语句加锁  lock_guard 是 mutex 的 stack 封装类,构造的时候 lock(),析构的时候 unlock()
            _tasks.emplace([task](){ // push(Task{...}) 放到队列后面
                (*task)();
            });
        }
#ifdef THREADPOOL_AUTO_GROW
        if (_idlThrNum < 1 && _pool.size() < THREADPOOL_MAX_NUM)
            addThread(1);
#endif // !THREADPOOL_AUTO_GROW
        _task_cv.notify_one(); // 唤醒一个线程执行

        return future;
    }

    //空闲线程数量
    int idlCount() { return _idlThrNum; }
    //线程数量
    int thrCount() { return _pool.size(); }
#ifndef THREADPOOL_AUTO_GROW
private:
#endif // !THREADPOOL_AUTO_GROW
    //添加指定数量的线程
    void addThread(unsigned short size)
    {
        for (; _pool.size() < THREADPOOL_MAX_NUM && size > 0; --size)
        {   //增加线程数量,但不超过 预定义数量 THREADPOOL_MAX_NUM
            _pool.emplace_back( [this]{ //工作线程函数
                while (_run)
                {
                    Task task; // 获取一个待执行的 task
                    {
                        // unique_lock 相比 lock_guard 的好处是:可以随时 unlock() 和 lock()
                        unique_lock lock{ _lock };
                        _task_cv.wait(lock, [this]{
                                return !_run || !_tasks.empty();
                        }); // wait 直到有 task
                        if (!_run && _tasks.empty())
                            return;
                        task = move(_tasks.front()); // 按先进先出从队列取一个 task
                        _tasks.pop();
                    }
                    _idlThrNum--;
                    task();//执行任务
                    _idlThrNum++;
                }
            });
            _idlThrNum++;
        }
    }
};

}

#endif  //https://github.com/lzpong/

另一种实现

// A simple thread pool class.
// Usage examples:
//
// {
//   ThreadPool pool(16);  // 16 worker threads.
//   for (int i = 0; i < 100; ++i) {
//     pool.Schedule([i]() {
//       DoSlowExpensiveOperation(i);
//     });
//   }
//
//   // `pool` goes out of scope here - the code will block in the ~ThreadPool
//   // destructor until all work is complete.
// }
//
// // TODO(cbraley): Add examples with std::future.

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

// This file contains macros that we use to workaround some features that aren't
// available in C++11.

// We want to use std::invoke if C++17 is available, and fallback to "hand
// crafted" code if std::invoke isn't available.
//#if __cplusplus >= 201703L
//#define INVOKE_MACRO(CALLABLE, ARGS_TYPE, ARGS)  std::invoke(CALLABLE, std::forward(ARGS)...)
//#elif __cplusplus >= 201103L
// Update this with http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4169.html.
#define INVOKE_MACRO(CALLABLE, ARGS_TYPE, ARGS) CALLABLE(std::forward(ARGS)...)
//#else
//#error ("C++ version is too old! C++98 is not supported.")
//#endif

namespace cb
{

namespace impl
{

// This helper class simply returns a std::function that executes:
//   ReturnT x = func();
//   promise->set_value(x);
// However, this is tricky in the case where T == void. The code above won't
// compile if ReturnT == void, and neither will
//   promise->set_value(func());
// To workaround this, we use a template specialization for the case where
// ReturnT is void. If the "regular void" proposal is accepted, this could be
// simpler:
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0146r1.html.

// The non-specialized `FuncWrapper` implementation handles callables that
// return a non-void value.
template 
struct FuncWrapper
{
  template 
  std::function GetWrapped(FuncT&& func, std::shared_ptr> promise, ArgsT&&... args)
  {
    // TODO(cbraley): Capturing by value is inefficient. It would be more
    // efficient to move-capture everything, but we can't do this until C++14
    // generalized lambda capture is available. Can we use std::bind instead to
    // make this more efficient and still use C++11?
    return [promise, func, args...]() mutable { promise->set_value(INVOKE_MACRO(func, ArgsT, args)); };
  }
};

template 
void InvokeVoidRet(FuncT&& func, std::shared_ptr> promise, ArgsT&&... args)
{
  INVOKE_MACRO(func, ArgsT, args);
  promise->set_value();
}

// This `FuncWrapper` specialization handles callables that return void.
template <>
struct FuncWrapper
{
  template 
  std::function GetWrapped(FuncT&& func, std::shared_ptr> promise, ArgsT&&... args)
  {
    return [promise, func, args...]() mutable {
      INVOKE_MACRO(func, ArgsT, args);
      promise->set_value();
    };
  }
};

}  // namespace impl

class ThreadPool
{
public:
  // Create a thread pool with `num_workers` dedicated worker threads.
  explicit ThreadPool(int num_workers) : num_workers_(num_workers)
  {
    assert(num_workers_ > 0);
    // TODO(cbraley): Handle thread construction exceptions.
    workers_.reserve(num_workers);
    for (int i = 0; i < num_workers; ++i)
    {
      workers_.emplace_back(&ThreadPool::ThreadLoop, this);
    }
  }

  // Default construction is disallowed.
  ThreadPool() = delete;

  // Get the number of logical cores on the CPU. This is implemented using
  // std::thread::hardware_concurrency().
  // https://en.cppreference.com/w/cpp/thread/thread/hardware_concurrency
  static unsigned int GetNumLogicalCores()
  {
    // TODO(cbraley): Apparently this is broken in some older stdlib
    // implementations?
    const unsigned int dflt = std::thread::hardware_concurrency();
    if (dflt == 0)
    {
      // TODO(cbraley): Return some error code instead.
      return 16;
    }
    else
    {
      return dflt;
    }
  }

  // The `ThreadPool` destructor blocks until all outstanding work is complete.
  ~ThreadPool()
  {
    // TODO(cbraley): The current thread could help out to drain the work_ queue
    // faster - for example, if there is work that hasn't yet been scheduled this
    // thread could "pitch in" to help finish faster.

    {
      std::lock_guard scoped_lock(mu_);
      exit_ = true;
    }
    condvar_.notify_all();  // Tell *all* workers we are ready.

    for (std::thread& thread : workers_)
    {
      thread.join();
    }
  }

  // No copying, assigning, or std::move-ing.
  ThreadPool& operator=(const ThreadPool&) = delete;
  ThreadPool(const ThreadPool&) = delete;
  ThreadPool(ThreadPool&&) = delete;
  ThreadPool& operator=(ThreadPool&&) = delete;

  // Add the function `func` to the thread pool. `func` will be executed at some
  // point in the future on an arbitrary thread.
  void Schedule(std::function func)
  {
    ScheduleAndGetFuture(std::move(func));  // We ignore the returned std::future.
  }

  // Add `func` to the thread pool, and return a std::future that can be used to
  // access the function's return value.
  //
  // *** Usage example ***
  //   Don't be alarmed by this function's tricky looking signature - this is
  //   very easy to use. Here's an example:
  //
  //   int ComputeSum(std::vector& values) {
  //     int sum = 0;
  //     for (const int& v : values) {
  //       sum += v;
  //     }
  //     return sum;
  //   }
  //
  //   ThreadPool pool = ...;
  //   std::vector numbers = ...;
  //
  //   std::future sum_future = ScheduleAndGetFuture(
  //     []() {
  //       return ComputeSum(numbers);
  //     });
  //
  //   // Do other work...
  //
  //   std::cout << "The sum is " << sum_future.get() << std::endl;
  //
  // *** Details ***
  //   Given a callable `func` that returns a value of type `RetT`, this
  //   function returns a std::future that can be used to access
  //   `func`'s results.
  template 
  auto ScheduleAndGetFuture(FuncT&& func, ArgsT&&... args) -> std::future
  {
    using ReturnT = decltype(INVOKE_MACRO(func, ArgsT, args));

    // We are only allocating this std::promise in a shared_ptr because
    // std::promise is non-copyable.
    std::shared_ptr> promise = std::make_shared>();
    std::future ret_future = promise->get_future();

    impl::FuncWrapper func_wrapper;
    std::function wrapped_func =
        func_wrapper.GetWrapped(std::forward(func), std::move(promise), std::forward(args)...);

    // Acquire the lock, and then push the WorkItem onto the queue.
    {
      std::lock_guard scoped_lock(mu_);
      WorkItem work;
      work.func = std::move(wrapped_func);
      work_.emplace(std::move(work));
    }
    condvar_.notify_one();  // Tell one worker we are ready.
    return ret_future;
  }

  // Wait for all outstanding work to be completed.
  void Wait()
  {
    std::unique_lock lock(mu_);
    if (!work_.empty())
    {
      work_done_condvar_.wait(lock, [this] { return work_.empty(); });
    }
  }

  // Return the number of outstanding functions to be executed.
  int OutstandingWorkSize() const
  {
    std::lock_guard scoped_lock(mu_);
    return work_.size();
  }

  // Return the number of threads in the pool.
  int NumWorkers() const { return num_workers_; }

  void SetWorkDoneCallback(std::function func) { work_done_callback_ = std::move(func); }

private:
  void ThreadLoop()
  {
    // Wait until the ThreadPool sends us work.
    while (true)
    {
      WorkItem work_item;

      int prev_work_size = -1;
      {
        std::unique_lock lock(mu_);
        condvar_.wait(lock, [this] { return exit_ || (!work_.empty()); });
        // ...after the wait(), we hold the lock.

        // If all the work is done and exit_ is true, break out of the loop.
        if (exit_ && work_.empty())
        {
          break;
        }

        // Pop the work off of the queue - we are careful to execute the
        // work_item.func callback only after we have released the lock.
        prev_work_size = work_.size();
        work_item = std::move(work_.front());
        work_.pop();
      }

      // We are careful to do the work without the lock held!
      // TODO(cbraley): Handle exceptions properly.
      work_item.func();  // Do work.

      if (work_done_callback_)
      {
        work_done_callback_(prev_work_size - 1);
      }

      // Notify a condvar is all work is done.
      {
        std::unique_lock lock(mu_);
        if (work_.empty() && prev_work_size == 1)
        {
          work_done_condvar_.notify_all();
        }
      }
    }
  }

  // Number of worker threads - fixed at construction time.
  int num_workers_;

  // The destructor sets `exit_` to true and then notifies all workers. `exit_`
  // causes each thread to break out of their work loop.
  bool exit_ = false;

  mutable std::mutex mu_;

  // Work queue. Guarded by `mu_`.
  struct WorkItem
  {
    std::function func;
  };
  std::queue work_;

  // Condition variable used to notify worker threads that new work is
  // available.
  std::condition_variable condvar_;

  // Worker threads.
  std::vector workers_;

  // Condition variable used to notify that all work is complete - the work
  // queue has "run dry".
  std::condition_variable work_done_condvar_;

  // Whenever a work item is complete, we call this callback. If this is empty,
  // nothing is done.
  std::function work_done_callback_;
};

}  // namespace cb

引用:

基于C++11的线程池(threadpool),简洁且可以带任意多的参数 - _Ong - 博客园

c++简单线程池实现 - 渣码农 - 博客园

C++实现线程池_折线式成长的博客-CSDN博客_c++ 线程池

基于C++11实现线程池的工作原理 - 靑い空゛ - 博客园

线程池的C++实现 - 知乎

你可能感兴趣的:(C++,c++11,线程池,线程回调)