二维码是一种用于存储和传输信息的方便而广泛使用的图像编码技术。它是由黑色方块和白色空白区域组成的二维图形,可以通过扫描设备(如智能手机)进行解码。二维码基于特定的编码标准和解码算法——其中包括错误检测和纠错编码,以确保在图像损坏或部分遮挡的情况下仍能正确解码。二维码的优点是可以存储大量信息,并且能够快速扫描和解码,因此在商业、营销、物流等领域得到广泛应用
在日常生活中,二维码已成为我们个人名片的一种展示方式,如何通过人工智能生成内容(AI Generated Content, AIGC)技术让我们的名片二维码更有创意?这就要涉及到扩散模型Stable Diffusion
,下面是最终的生成效果
所谓扩散算法diffusion
是指先将一幅画面逐步加入噪点,一直到整个画面都变成白噪声。记录这个过程,然后逆转过来给AI学习。
AI看到的是什么?一个全是噪点的画面如何一点点变清晰直到变成一幅画,AI通过学习这个逐步去噪点的过程来学会作画。
diffusion
和之前大火的GAN
模型相比,有什么优势呢?用OpenAI的一篇论文内容来讲,用diffusion
生成的图像质量明显优于GAN
模型;而且与GAN
不同,diffusion
不用在鞍点问题上纠结——涉及稳定性问题,只需要去最小化一个标准的凸交叉熵损失即可,这样就大大简化了模型训练过程中,数据处理的难度。
总结来说,目前的训练技术让diffusion
直接跨越了GAN
领域调模型的阶段,而是直接可以用来做下游任务,是一个新的数学范式在图像领域应用的实例
diffusion
在工程应用中的基本概念列举如下:
Stable Diffusion
的功能是从文本描述中生成高质量、高分辨率的图像。它由Stability Al首次公开发布,其代码和模型权重均免费开源;Stable Diffusion
模型。它支持多种功能和设置,是Stable Difusion
使用中最方便的工具。Automatic1111
就是用户社区常用的网络Stable Diffusion webui
txt2lmg
指输入文字,并看到生成的图像;Img2lmg
指输入图像和文字,生成一张新的图像。新的图像保留了原始图像的颜色和构图,但是根据文字的描述,改变了图像的风格和特征ControlNet
是Stable Diffusion webui
的一个扩展,可以根据输入的图像和文字,对图像进行各种控制,例如改变图像的姿态、表情、服装、背景或风格,生成不同角度和光照的图像等。ControlNet
的tile
是多种生成方法的基础支撑之一,同时ControlNet
也是Stable Diffusion
目前效果最好的扩展接下来介绍如何部署Stable Diffusion
模型生成个人专属创意名片
主要分为以下步骤:
创建Python3.10的虚拟环境
conda create -n ai_draw python=3.10
虚拟环境相关操作请参考:Anaconda安装与Python虚拟环境配置保姆级图文教程(附速查字典)
在虚拟环境中安装Pytorch
这步比较涉及显卡相关的配置,比较复杂,请参考:最新CUDA/cuDNN与Pytorch保姆级图文安装教程(速查字典版)
下载模型stable-diffusion-webui
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui
安装依赖库
首先进入虚拟环境
conda activate ai_draw
接着进入stable-diffusion-webui
根目录运行
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt
采用清华源可以更快完成安装
下载模型
这里采用ghostmix模型,下载完成后移动到这个目录stable-diffusion-webui-master\models\Stable-diffusion
根目录运行启动文件
python launch.py
期间会下载一些新的依赖,有可能超时报错,多启动几次即可
通过第三节的配置,成功后即可在终端看到
接下来选择ghostmix
模型,并通过国内镜像ControlNet安装扩展
接着点击img2img
上传个人二维码,这里怕和谐就不放图片了
接着配置ControlNet
参数配置如下:
最后输入正反向提示词
a cubism painting of a town with a lot of houses in the snow with a sky background, Andreas Rocha, matte painting concept art, a detailed matte painting
ugly, disfigured, low quality, blurry, nsfw
点击生成即可
我们要对技术保持敬畏,法条约束的暂时缺位并非默许用技术来作恶。
更多AIGC文章请看:
更多精彩专栏: