判断无向图是否有回路有四种方法



一、无向图回路的判断

    对于无向图,判断其是否有回路有四种方法,如下所示:

    1、利用深度优先搜索DFS,在搜索过程中判断是否会出现后向边(DFS中,连接顶点u到它的某一祖先顶点v的边),即在DFS对顶点进行着色过程中,若出现所指向的顶点为黑色,则此顶点是一个已经遍历过的顶点(祖先),出现了后向边,若完成DFS后,则图中有回路;

    2、在图的邻接表表示中,首先统计每个顶点的度,然后重复寻找一个度为1的顶点,将度为1和0的顶点从图中删除,并将与该顶点相关联的顶点的度减1,然后继续反复寻找度为1的,在寻找过程中若出现若干顶点的度都为2 sanzhangpai,则这些顶点组成了一个回路;否则,图中不存在回路。

    3、利用BFS,在遍历过程中,为每个节点标记一个深度deep,如果存在某个节点为v,除了其父节点u外,还存在与v相邻的节点w使得deep[v]<=deep[w]的,那么该图一定存在回路;
    4、用BFS或DFS遍历,最后判断对于每一个连通分量当中,如果边数m>=节点个数n,那么改图一定存在回路。因此在DFS或BFS中,我们可以统计每一个连通分量的顶点数目n和边数m,如果m>=n则return false;直到访问完所有的节点&

你可能感兴趣的:(C++)