STM32—定时器原理及配置(入门详解)

目录

一、定时器工作原理

二、定时器分类  

1.基本定时器(TIM6~TIM7)

2.通用定时器(TIM2~TIM5)

3.高级定时器(TIM1和TIM8)

三、定时器计数模式

四、溢出时间计算

五、定时器配置

六、main.c代码


一、定时器工作原理

        利用精准的时基,通过硬件的方式,实现定时功能。定时器核心就是计数器。

二、定时器分类  

        1.基本定时器(TIM6~TIM7)

        功能:作为时基,定时功能。

        2.通用定时器(TIM2~TIM5)

        功能:具有多路独立通道,输入捕获,输出比较,也可作为时基。

STM32—定时器原理及配置(入门详解)_第1张图片

        3.高级定时器(TIM1和TIM8)

        功能:除具备通用定时器所有功能外,还具备带死区控制的互补信号输出、刹车输入等功能 (可用于电机控制、数字电源设计等)。    

三、定时器计数模式

STM32—定时器原理及配置(入门详解)_第2张图片

 STM32—定时器原理及配置(入门详解)_第3张图片

四、溢出时间计算

        1.部分时钟源图

STM32—定时器原理及配置(入门详解)_第4张图片

        2.溢出时间计算方式:

STM32—定时器原理及配置(入门详解)_第5张图片

        PSC是预分频系数,ARR自动重装载值。

        例: 要定时500ms,则:PSC=7199,ARR=4999,Tclk=72M(72*10^6 s )。

五、定时器配置

0.时钟配置72MHz

STM32—定时器原理及配置(入门详解)_第6张图片

1.选择通用TIM2   

STM32—定时器原理及配置(入门详解)_第7张图片

​​​​2.​​​设置定时器时钟源

STM32—定时器原理及配置(入门详解)_第8张图片

3.定时器中断打开

STM32—定时器原理及配置(入门详解)_第9张图片

 4.设置定时器初值及属性

STM32—定时器原理及配置(入门详解)_第10张图片

六、main.c代码

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "tim.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/*============================重点代码==========================*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef* htim)//定时器中断调用的函数
//返回值是指针变量
{
	if(htim->Instance == TIM2){//判断是否是TIM2产生的中断
		HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_8);//反转电平
	}
}
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_TIM2_Init();//定时器初始化
  /* USER CODE BEGIN 2 */
	
HAL_TIM_Base_Start_IT(&htim2);//启动定时器

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

你可能感兴趣的:(STM32,stm32,单片机,嵌入式硬件)