- 算法复杂度分析
每天一个秃顶小技巧
算法java后端数据结构
算法复杂度分析前言算法(Algorithm)是指用来操作数据、解决程序问题的一组方法。对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但在过程中消耗的资源和时间却会有很大的区别。那么我们应该如何去衡量不同算法之间的优劣呢?主要还是从算法所占用的「时间」和「空间」两个维度去考量。时间维度:是指执行当前算法所消耗的时间,我们通常用时间复杂度来描述。空间维度:是指执行当前算法需要占用多少内存
- 数据结构—数组
每天一个秃顶小技巧
数据结构golang后端
数据结构—数组相关数据结构实现用go语言实现相关代码做题合集:https://github.com/longpi1/algorithm-pattern数组(Array)在Go中,数组是固定长度的连续内存块,长度在定义时确定且不可变。数组的使用场景较少,因为切片(slice)更加灵活,通常更常用。所以在做算法题时一般用切片进行编写定义和特点数组的长度是类型的一部分,例如[3]int和[4]int是不
- Python开发从新手到专家:第三章 列表、元组和集合
caifox菜狐狸
Python开发从新手到专家python元素集合列表元组数据结构字典
在Python开发的旅程中,数据结构是每一位开发者必须掌握的核心知识。它们是构建程序的基石,决定了代码的效率、可读性和可维护性。本章将深入探讨Python中的三种基本数据结构:列表、元组和集合。这三种数据结构在实际开发中有着广泛的应用,从简单的数据存储到复杂的算法实现,它们都扮演着不可或缺的角色。无论你是刚刚接触Python的新手,还是希望进一步提升编程技能的开发者,本章都将是你的宝贵指南。我们将
- 操作系统必备定义2.2
勤勉螺丝钉
学习
2.2CPU调度CPU调度:是对CPU进行分配,即从就绪队列中按照一定的算法(公平高效的原则)选择一个进程,并将CPU分配给它运行,以实现进程并发的执行。CPU调度是多道程序操作系统的基础,是操作系统设计的核心问题。调度的层次:①高级调度(作业调度了):按照某种规则,从外存上处于后备队列中的作业中挑选一个(或多个),给他(们)分配内存、I/O设备等必要的资源,并建立相应的进程,使他们获得竞争CPU
- 数据结构学习之栈
楼田莉子
数据结构学习笔记算法数据结构c语言
本篇博客我们将深入学习数据结构中栈与队列相关的内容作者的个人gitee:楼田莉子(riko-lou-tian)-Gitee.com目录概念栈的实现初始化销毁入栈判空出栈获取栈顶元素栈的有效元素个数源代码与栈相关的算法题(力扣)有效的括号编辑概念栈是一种特殊的线性表,只允许在固定的一端进行插入删除元素的操作。进行数据插入和删除操作的一端叫栈顶,另一端叫栈底。遵循“后进先出”的原则。下图就是对栈后进先
- AI Agent开发第81课-企业AI落地15大陷阱与破局之道
TGITCIC
AIAgent开发大全人工智能AI落地企业AI落地大模型落地企业大模型落地
1.技术至上:忽视业务融合1.1业务需求驱动的本质AI项目的核心价值在于解决业务痛点,而非技术炫技。某银行通过成熟的人脸识别技术将坏账率降低15%,其成功源于对业务场景的精准把握。技术选择必须基于业务需求的优先级排序,而非单纯追求算法复杂度。当零售企业用AI优化供应链时,其目标是提升库存周转率0.5个百分点,而非发表顶会论文。1.2技术与业务的错位某科技公司投入千万研发智能客服系统,最终因响应准确
- Kafka 核心原理篇:深入理解分布式消息系统的内核机制
真实的菜
kafka分布式kafkalinq
Kafka核心原理篇:深入理解分布式消息系统的内核机制文章目录Kafka核心原理篇:深入理解分布式消息系统的内核机制消息存储与持久化机制日志分段存储策略️**分段文件结构****索引机制详解**高效的磁盘读写与数据压缩算法**零拷贝技术(Zero-Copy)****数据压缩策略****页缓存优化**数据过期与清理策略⏰**基于时间的清理****基于大小的清理**️**日志压缩(LogCompact
- 大模型-FlashAttention 算法分析
清风lsq
大模型推理算法算法大模型推理LLMflashattention
一、FlashAttention的概述FlashAttention是一种IO感知精确注意力算法。通过感知显存读取/写入,FlashAttention的运行速度比PyTorch标准Attention快了2-4倍,所需内存也仅是其5%-20%。随着Transformer变得越来越大、越来越深,但它在长序列上仍然处理的很慢、且耗费内存。(自注意力时间和显存复杂度与序列长度成二次方),现有近似注意力方法,
- 基于大模型的胆囊结石全流程预测与诊疗系统技术方案
目录一、系统架构设计1.1数据采集与预处理模块1.2大模型核心算法模块二、全流程系统流程图三、系统集成方案3.1模块交互流程3.2数据流示意图四、系统部署拓扑图五、核心模块实现细节5.1术前风险预测算法5.2术中监测算法5.3术后并发症预测模型六、关键技术验证方案6.1模型验证流程6.2临床试验设计框架七、典型应用场景流程7.1腹腔镜手术决策流程一、系统架构设计1.1数据采集与预处理模块#数据采集
- 基于大模型的胆囊结石全流程预测与诊疗系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能机器学习深度学习方案大纲
目录一、引言二、系统架构设计(一)数据采集与预处理模块(二)大模型核心算法模块(三)应用层功能模块三、全流程系统流程图四、术前阶段详细方案(一)患者信息采集与整合(二)胆囊结石风险预测(三)手术方案制定辅助(四)麻醉方案规划五、术中阶段详细方案(一)实时数据监测与传输(二)手术进程智能辅助六、术后阶段详细方案(一)术后恢复情况预测(二)并发症风险预测(三)护理方案调整(四)康复指导七、并发症风险预
- AppML 案例简介
沐知全栈开发
开发语言
AppML案例简介引言AppML,全称为“应用程序机器学习”,是一种将机器学习技术与移动应用开发相结合的技术框架。它旨在简化移动应用的机器学习功能集成,使得开发者无需深入了解复杂的机器学习算法,即可将强大的AI功能引入他们的应用中。本文将简要介绍AppML的一些成功案例,展示其在不同领域的应用和价值。AppML案例一:健康监测应用案例概述:一款名为“HealthMate”的健康监测应用利用AppM
- PL-SLAM: Real-Time Monocular Visual SLAM with Points and Lines
PL-SLAM文章目录PL-SLAM摘要系统介绍综述方法综述LINE-BASEDSLAM一、基于线的SLAM二、基于线和点的BA三、全局重定位使用线条初始化地图实验结果说明位姿求解三角化LSD直线检测算法**一、核心原理**⚙️**二、实现方法****三、应用场景**⚖️**四、优缺点与优化****优缺点对比****总结**End摘要译文——众所周知,低纹理场景是依赖点对应的几何计算机视觉算法的主
- Lucence 和 Elasticsearch 的区别?
码出财富
elasticsearch大数据搜索引擎
Lucene和Elasticsearch都是在信息检索和文本处理领域中广泛使用的工具,它们的主要区别如下:概念和定位Lucene:是一个基于Java的全文检索库,它提供了一套强大的底层索引和搜索功能的API。Lucene更像是一个工具包,开发人员可以基于它来构建自己的搜索应用程序,需要深入了解搜索的底层原理和算法,对开发者的技术要求较高。Elasticsearch:是一个基于Lucene的分布式搜
- IDS检测原理和架构
hao_wujing
安全
大家读完觉得有帮助记得关注和点赞!!!IDS(入侵检测系统)的核心使命是**从海量网络/主机行为中精准识别攻击企图**,其技术本质是**异常行为模式识别引擎**。以下从检测原理、系统架构到技术演进进行深度解析:---###⚙️IDS核心检测原理####1.**双引擎协同机制**|**检测类型**|**原理**|**优势/局限**|**典型算法**||--------------------|---
- 塞浦路斯VPS MySQL 8.7量子安全索引测试
cpsvps_net
mysql安全数据库
在数字化时代背景下,数据安全已成为全球企业关注的核心议题。本文将深入解析塞浦路斯VPS环境下MySQL8.7量子安全索引的突破性测试成果,揭示其如何通过先进的加密算法重构数据库防护体系,为金融、医疗等敏感行业提供符合后量子密码学标准的解决方案。塞浦路斯VPSMySQL8.7量子安全索引测试-下一代数据库防护技术解析量子计算威胁下的数据库安全新挑战随着量子计算机的快速发展,传统加密算法正面临前所未有
- 8、 探讨排序算法及其实际应用
侯昂
排序算法插入排序快速排序
探讨排序算法及其实际应用1.排序算法的重要性排序算法在计算机科学中扮演着至关重要的角色。无论是日常生活中常见的任务,还是复杂的数据处理工作,排序算法都能帮助我们更有效地管理和检索信息。以下是几个实际应用场景:字典中的单词:字典中的单词按顺序排列,忽略大小写差异。这使得查找特定单词变得非常容易。目录中的文件:目录中的文件通常按排序顺序列出,方便用户快速找到所需文件。书籍索引:一本书的索引是排序过的,
- 基于MATLAB平台设计并实现自适应噪声抵消器(Adaptive Noise Canceller, ANC)
AI Dog
自动控制matlab自适应噪声抵消器ANC信号去噪
本课题旨在基于MATLAB平台设计并实现自适应噪声抵消器(AdaptiveNoiseCanceller,ANC),以有效去除信号中的背景噪声,提升语音、医疗或通信系统中的信噪比。系统采用自适应滤波算法,如最小均方误差(LMS)或归一化LMS(NLMS)算法,通过参考噪声信号估计并抵消主通道信号中的噪声成分,实现动态降噪。研究内容包括信号采集与仿真建模、自适应滤波器结构设计、算法参数调整及降噪性能评
- 教育技术学读计算机论文的提示词
东方-教育技术博主
学术学习相关AI
角色:你是一位经验丰富的计算机专业教授,擅长用通俗易懂的语言向初学者解释复杂概念。我现在正在学习阅读计算机科学领域的算法论文,但我的基础比较薄弱(了解编程基础如变量、循环、函数,了解一点数据结构和算法概念如数组、链表、排序,但对高级术语和数学证明不熟悉)。同时又是一个教育技术学教授。任务:请帮我解释以下论文内容中我不理解的部分。如果遇到初学者可能不懂的地方,我需要你用最清晰、最简洁、最易懂的方式解
- 【Java】已解决java.sql.SQLRecoverableException异常
屿小夏
java开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 如何用Python实现基础的文生视频AI模型
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南python音视频人工智能ai
如何用Python实现基础的文生视频AI模型关键词:文生视频、AI生成、扩散模型、多模态对齐、视频生成算法、Python实现、时间一致性摘要:本文系统讲解基于扩散模型的文生视频(Text-to-Video,T2V)AI模型的核心原理与Python实现方法。从技术背景到数学模型,从算法设计到项目实战,逐步拆解文本-视频跨模态对齐、时间序列建模、扩散生成等关键技术。通过PyTorch实现一个基础版文生
- 深度学习流体力学【干货】
人工智能交叉前沿技术,
人工智能深度学习python机器学习
深度学习作为一种新兴的机器学习技术,为流体科学的研究提供了新的思路和方法。通过对大量数据的学习和分析,深度学习模型可以自动提取特征和模式,为流体科学中的复杂问题提供解决方案。然而,深度学习在流体科学中的应用还面临一些挑战,需要进一步研究和探索。未来,深度学习与传统流体力学方法的结合将成为流体科学研究的重要方向,多模态数据的融合、模型的可解释性、实时预测和控制等将是深度学习在流体科学中发展的重点。相
- 使用GPU进行机器学习训练时,如果GPU-Util计算核心满载工作但是显存占用较少,应该如何优化?
十子木
机器学习深度学习人工智能
是否需要优化?如果任务运行正常:无需干预(GPU设计本就是优先榨干计算性能)。如果出现卡顿或效率低下:增大batch_size:提升显存占用,减少数据搬运次数(但需避免OOM)。启用混合精度:torch.cuda.amp可减少显存占用并加速计算。检查CPU到GPU的数据流:避免频繁的小数据拷贝(如DataLoader的num_workers设置)。
- 机器学习中为什么要用混合精度训练
十子木
机器学习机器学习人工智能
目录FP16与显存占用关系机器学习中一般使用混合精度训练:FP16计算+FP32存储关键变量。FP16与显存占用关系显存(VideoRAM,简称VRAM)是显卡(GPU)专用的内存。FP32(单精度浮点):传统深度学习默认使用32位浮点数每个参数占用`4字节`例如:1亿参数的模型→约400MB显存FP16(半精度浮点):每个参数占用`2字节`(直接减半)相同模型→约200MB显存双精度浮点(FP6
- yolov算法详解_yolo 目标检测算法个人总结(yolov1)
CHAO JIANG
yolov算法详解
yolo目标检测算法个人总结目前yolo目标检测有两个版本,分别为v1和v2。因工作需要用yolo算法检测人物,所以这段时间重点看了这两篇论文,并实现了对应的tensorflow代码。这里记录下在论文阅读过程中的一些细节信息,留给自己,同时也希望各位能指出本人理解错误的地方,谢谢!一:yolov1关于yolov1算法的详解在网上已经非常多了,在这里我大概叙述下算法的流程,以及在开发过程中遇到的一些
- 高精度相机:工业自动化的“慧眼”,驱动智能制造新未来
lingling009
数码相机
在当今工业4.0时代,自动化技术的飞速发展正重塑制造业格局。作为工业视觉系统的核心组件,高精度相机扮演着“智慧之眼”的角色,帮助企业在复杂环境中实现精准识别与高效操作。迁移科技,自2017年成立以来,已成长为行业领先的3D工业相机和3D视觉系统供应商。凭借在硬件、算法及软件领域的技术积累,我们打造了稳定、易用、高回报的AI+3D视觉解决方案,服务于新能源、汽车、化工、家电、金属制造等行业。本文将聚
- 结构光相机:重塑工业自动化的“智慧之眼”,驱动智能制造新未来
lingling009
数码相机
一、迁移科技——3D视觉领域的创新引擎迁移科技成立于2017年,凭借结构光相机核心技术,已成为全球领先的3D工业视觉系统供应商。累计融资数亿元,深耕硬件、算法与软件三位一体技术,打造“稳定、易用、高回报”的AI+3D视觉解决方案,服务新能源、汽车、化工等10+行业,赋能工业自动化转型升级。二、结构光相机如何破解工业四大痛点1:高精度定位——汽车装配的“毫米级守护者”痛点:传统2D视觉无法捕捉曲面零
- 入门pytorch-联邦学习
四代机您发多少
pytorch人工智能python
本文联邦学习的代码引用于https://github.com/shaoxiongji/federated-learning本篇文章相当于带大家读一遍联邦学习的代码,同时加深了大家对联邦学习和Pytorch框架的理解。这里想简单介绍一下联邦学习。联邦学习说白了,就是假如有NNN个数据拥有者F1,...,FN{F_1,...,F_N}F1,...,FN,他们希望使用这些数据来训练机器学习模型,但是又各
- CVPR2024 分割Segmentation相关论文37篇速览
木木阳
CVPR2024Segmentation分割论文
Paper1MFP:MakingFullUseofProbabilityMapsforInteractiveImageSegmentation摘要小结:最近的交互式分割算法中,将先前的概率图作为网络输入,以帮助当前分割轮次的预测。然而,尽管使用了先前的掩膜,概率图中包含的有用信息并没有很好地传播到当前预测中。在本文中,为了克服这一局限性,我们提出了一种新颖有效的基于点击的交互式图像分割算法MFP,
- 【Maven】Maven核心机制的 万字 深度解析
夜雨hiyeyu.com
mavenjavaspringspringbootmvc系统架构后端
Maven核心机制的万字深度解析一、依赖管理机制全解(工业级依赖治理方案)1.坐标体系的本质与设计哲学2.依赖传递与仲裁算法的工程实现**冲突仲裁核心算法**企业级仲裁策略3.Scope作用域的类加载隔离原理4.多级仓库体系架构设计二、构建生命周期底层原理(工业级流水线解析)1.生命周期模型架构2.Default生命周期核心阶段详解3.插件执行机制内核剖析三、企业级工程化实践(千亿级项目的解决方案
- 前端领域:jQuery UI组件的使用指南_副本
大厂前端小白菜
前端开发实战前端jqueryuiai
前端领域:jQueryUI组件的使用指南关键词:jQueryUI、前端组件、交互效果、用户界面、使用指南摘要:本文旨在为前端开发者提供一份全面的jQueryUI组件使用指南。首先介绍了jQueryUI的背景,包括其目的、适用读者、文档结构和相关术语。接着详细阐述了jQueryUI的核心概念与联系,通过文本示意图和Mermaid流程图展示其架构。然后深入讲解了核心算法原理,并给出具体操作步骤和Pyt
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod