libuv库学习笔记-networking

Networking

在 libuv 中,网络编程与直接使用 BSD socket 区别不大,有些地方还更简单,概念保持不变的同时,libuv 上所有接口都是非阻塞的。它还提供了很多工具函数,抽象了恼人、啰嗦的底层任务,如使用 BSD socket 结构体设置 socket 、DNS 查找以及调整各种 socket 参数。

在网络I/O中会使用到uv_tcp_tuv_udp_t

note

本章中的代码片段仅用于展示 libuv API ,并不是优质代码的范例,常有内存泄露和未关闭的连接。

TCP

TCP是面向连接的,字节流协议,因此基于libuv的stream实现。

server

服务器端的建立流程如下:

1.uv_tcp_init建立tcp句柄。
2.uv_tcp_bind绑定。
3.uv_listen建立监听,当有新的连接到来时,激活调用回调函数。
4.uv_accept接收链接。
5.使用stream操作来和客户端通信。

tcp-echo-server/main.c - The listen socket

int main() {
    loop = uv_default_loop();

    uv_tcp_t server;
    uv_tcp_init(loop, &server);

    uv_ip4_addr("0.0.0.0", DEFAULT_PORT, &addr);

    uv_tcp_bind(&server, (const struct sockaddr*)&addr, 0);
    int r = uv_listen((uv_stream_t*) &server, DEFAULT_BACKLOG, on_new_connection);
    if (r) {
        fprintf(stderr, "Listen error %s\n", uv_strerror(r));
        return 1;
    }
    return uv_run(loop, UV_RUN_DEFAULT);
}

你可以调用uv_ip4_addr()函数来将ip地址和端口号转换为sockaddr_in结构,这样就可以被BSD的socket使用了。要想完成逆转换的话可以调用uv_ip4_name()

note

对应ipv6有类似的uv_ip6_*

大多数的设置函数是同步的,因为它们毕竟不是io操作。到了uv_listen这句,我们再次回到回调函数的风格上来。第二个参数是待处理的连接请求队列-最大长度的请求连接队列。

当客户端开始建立连接的时候,回调函数on_new_connection需要使用uv_accept去建立一个与客户端socket通信的句柄。同时,我们也要开始从流中读取数据。

tcp-echo-server/main.c - Accepting the client

void on_new_connection(uv_stream_t *server, int status) {
    if (status < 0) {
        fprintf(stderr, "New connection error %s\n", uv_strerror(status));
        // error!
        return;
    }

    uv_tcp_t *client = (uv_tcp_t*) malloc(sizeof(uv_tcp_t));
    uv_tcp_init(loop, client);
    if (uv_accept(server, (uv_stream_t*) client) == 0) {
        uv_read_start((uv_stream_t*) client, alloc_buffer, echo_read);
    }
    else {
        uv_close((uv_handle_t*) client, NULL);
    }
}

上述的函数集和stream的例子类似,在code文件夹中可以找到更多的例子。记得在socket不需要后,调用uv_close。如果你不需要接受连接,你甚至可以在uv_listen的回调函数中调用uv_close。

client

当你在服务器端完成绑定/监听/接收的操作后,在客户端只要简单地调用uv_tcp_connect,它的回调函数和上面类似,具体例子如下:

uv_tcp_t* socket = (uv_tcp_t*)malloc(sizeof(uv_tcp_t));
uv_tcp_init(loop, socket);

uv_connect_t* connect = (uv_connect_t*)malloc(sizeof(uv_connect_t));

struct sockaddr_in dest;
uv_ip4_addr("127.0.0.1", 80, &dest);

uv_tcp_connect(connect, socket, dest, on_connect);

当建立连接后,回调函数on_connect会被调用。回调函数会接收到一个uv_connect_t结构的数据,它的handle指向通信的socket。

UDP

用户数据报协议(User Datagram Protocol)提供无连接的,不可靠的网络通信。因此,libuv不会提供一个stream实现的形式,而是提供了一个uv_udp_t句柄(接收端),和一个uv_udp_send_t句柄(发送端),还有相关的函数。也就是说,实际的读写api与正常的流读取类似。下面的例子展示了一个从DCHP服务器获取ip的例子。

note

你必须以管理员的权限运行udp-dhcp,因为它的端口号低于1024

udp-dhcp/main.c - Setup and send UDP packets

uv_loop_t *loop;
uv_udp_t send_socket;
uv_udp_t recv_socket;

int main() {
    loop = uv_default_loop();

    uv_udp_init(loop, &recv_socket);
    struct sockaddr_in recv_addr;
    uv_ip4_addr("0.0.0.0", 68, &recv_addr);
    uv_udp_bind(&recv_socket, (const struct sockaddr *)&recv_addr, UV_UDP_REUSEADDR);
    uv_udp_recv_start(&recv_socket, alloc_buffer, on_read);

    uv_udp_init(loop, &send_socket);
    struct sockaddr_in broadcast_addr;
    uv_ip4_addr("0.0.0.0", 0, &broadcast_addr);
    uv_udp_bind(&send_socket, (const struct sockaddr *)&broadcast_addr, 0);
    uv_udp_set_broadcast(&send_socket, 1);

    uv_udp_send_t send_req;
    uv_buf_t discover_msg = make_discover_msg();

    struct sockaddr_in send_addr;
    uv_ip4_addr("255.255.255.255", 67, &send_addr);
    uv_udp_send(&send_req, &send_socket, &discover_msg, 1, (const struct sockaddr *)&send_addr, on_send);

    return uv_run(loop, UV_RUN_DEFAULT);
}
note

ip地址为0.0.0.0,用来绑定所有的接口。255.255.255.255是一个广播地址,这也意味着数据报将往所有的子网接口中发送。端口号为0代表着由操作系统随机分配一个端口。

首先,我们设置了一个用于接收socket绑定了全部网卡,端口号为68作为DHCP客户端,然后开始从中读取数据。它会接收所有来自DHCP服务器的返回数据。我们设置了UV_UDP_REUSEADDR标记,用来和其他共享端口的 DHCP客户端和平共处。接着,我们设置了一个类似的发送socket,然后使用uv_udp_send向DHCP服务器(在67端口)发送广播。

设置广播发送是非常必要的,否则你会接收到EACCES错误。和此前一样,如果在读写中出错,返回码<0。

因为UDP不会建立连接,因此回调函数会接收到关于发送者的额外的信息。

当没有可读数据后,nread等于0。如果addrnull,它代表了没有可读数据(回调函数不会做任何处理)。如果不为null,则说明了从addr中接收到一个空的数据报。如果flag为UV_UDP_PARTIAL,则代表了内存分配的空间不够存放接收到的数据了,在这种情形下,操作系统会丢弃存不下的数据。

udp-dhcp/main.c - Reading packets

void on_read(uv_udp_t *req, ssize_t nread, const uv_buf_t *buf, const struct sockaddr *addr, unsigned flags) {
    if (nread < 0) {
        fprintf(stderr, "Read error %s\n", uv_err_name(nread));
        uv_close((uv_handle_t*) req, NULL);
        free(buf->base);
        return;
    }

    char sender[17] = { 0 };
    uv_ip4_name((const struct sockaddr_in*) addr, sender, 16);
    fprintf(stderr, "Recv from %s\n", sender);

    // ... DHCP specific code
    unsigned int *as_integer = (unsigned int*)buf->base;
    unsigned int ipbin = ntohl(as_integer[4]);
    unsigned char ip[4] = {0};
    int i;
    for (i = 0; i < 4; i++)
        ip[i] = (ipbin >> i*8) & 0xff;
    fprintf(stderr, "Offered IP %d.%d.%d.%d\n", ip[3], ip[2], ip[1], ip[0]);

    free(buf->base);
    uv_udp_recv_stop(req);
}

UDP Options

生存时间(Time-to-live)

可以通过uv_udp_set_ttl更改生存时间。

只允许IPV6协议栈

在调用uv_udp_bind时,设置UV_UDP_IPV6ONLY标示,可以强制只使用ipv6。

组播

socket也支持组播,可以这么使用:

UV_EXTERN int uv_udp_set_membership(uv_udp_t* handle,
                                    const char* multicast_addr,
                                    const char* interface_addr,
                                    uv_membership membership);

其中membership可以为UV_JOIN_GROUPUV_LEAVE_GROUP
这里有一篇很好的关于组播的文章。
可以使用uv_udp_set_multicast_loop修改本地的组播。
同样可以使用uv_udp_set_multicast_ttl修改组播数据报的生存时间。(设定生存时间可以防止数据报由于环路的原因,会出现无限循环的问题)。

Querying DNS

libuv提供了一个异步的DNS解决方案。它提供了自己的getaddrinfo。在回调函数中你可以像使用正常的socket操作一样。让我们来看一下例子:

dns/main.c

int main() {
    loop = uv_default_loop();

    struct addrinfo hints;
    hints.ai_family = PF_INET;
    hints.ai_socktype = SOCK_STREAM;
    hints.ai_protocol = IPPROTO_TCP;
    hints.ai_flags = 0;

    uv_getaddrinfo_t resolver;
    fprintf(stderr, "irc.freenode.net is... ");
    int r = uv_getaddrinfo(loop, &resolver, on_resolved, "irc.freenode.net", "6667", &hints);

    if (r) {
        fprintf(stderr, "getaddrinfo call error %s\n", uv_err_name(r));
        return 1;
    }
    return uv_run(loop, UV_RUN_DEFAULT);
}

如果uv_getaddrinfo返回非零值,说明设置错误了,因此也不会激发回调函数。在函数返回后,所有的参数将会被回收和释放。主机地址,请求服务器地址,还有hints的结构都可以在这里找到详细的说明。如果想使用同步请求,可以将回调函数设置为NULL。

在回调函数on_resolved中,你可以从struct addrinfo(s)链表中获取返回的IP,最后需要调用uv_freeaddrinfo回收掉链表。下面的例子演示了回调函数的内容。

dns/main.c

void on_resolved(uv_getaddrinfo_t *resolver, int status, struct addrinfo *res) {
    if (status < 0) {
        fprintf(stderr, "getaddrinfo callback error %s\n", uv_err_name(status));
        return;
    }

    char addr[17] = {'\0'};
    uv_ip4_name((struct sockaddr_in*) res->ai_addr, addr, 16);
    fprintf(stderr, "%s\n", addr);

    uv_connect_t *connect_req = (uv_connect_t*) malloc(sizeof(uv_connect_t));
    uv_tcp_t *socket = (uv_tcp_t*) malloc(sizeof(uv_tcp_t));
    uv_tcp_init(loop, socket);

    uv_tcp_connect(connect_req, socket, (const struct sockaddr*) res->ai_addr, on_connect);

    uv_freeaddrinfo(res);
}

libuv同样提供了DNS逆解析的函数uv_getnameinfo。

Network interfaces

可以调用uv_interface_addresses获得系统的网络接口信息。下面这个简单的例子打印出所有可以获取的信息。这在服务器开始准备绑定IP地址的时候很有用。

interfaces/main.c

#include 
#include 

int main() {
    char buf[512];
    uv_interface_address_t *info;
    int count, i;

    uv_interface_addresses(&info, &count);
    i = count;

    printf("Number of interfaces: %d\n", count);
    while (i--) {
        uv_interface_address_t interface = info[i];

        printf("Name: %s\n", interface.name);
        printf("Internal? %s\n", interface.is_internal ? "Yes" : "No");
        
        if (interface.address.address4.sin_family == AF_INET) {
            uv_ip4_name(&interface.address.address4, buf, sizeof(buf));
            printf("IPv4 address: %s\n", buf);
        }
        else if (interface.address.address4.sin_family == AF_INET6) {
            uv_ip6_name(&interface.address.address6, buf, sizeof(buf));
            printf("IPv6 address: %s\n", buf);
        }

        printf("\n");
    }

    uv_free_interface_addresses(info, count);
    return 0;
}

is_internal可以用来表示是否是内部的IP。由于一个物理接口会有多个IP地址,所以每一次while循环的时候都会打印一次。

你可能感兴趣的:(java,c++,学习,笔记,网络)