- C#调用OpenCvSharp实现图像的直方图均衡化
gc_2299
dotnet编程OpenCvSharp直方图均衡化
本文学习基于OpenCvSharp的直方图均衡化处理方式,并使用SkiaSharp绘制相关图形。直方图均衡化是一种图像处理方法,针对偏亮或偏暗的图像,通过调整图像的像素值来增强图像对比度,详细原理及介绍见参考文献1-4。 直方图均衡化第一步要将彩色图像转换为灰度图像,调用OpenCvSharp中的Cv2.CvtColor函数转换,主要代码及效果图如下所示:MatoriImage=Cv2.Im
- 图像预处理技术与算法
木子n1
算法嵌入式开发算法数码相机计算机视觉
图像预处理是计算机视觉和图像处理中非常关键的第一步,其目的是为了提高后续算法对原始图像的识别、分析和理解能力。以下是一些主要的图像预处理技术:1.图像增强:对比度调整:通过直方图均衡化(HistogramEqualization)等方法改善图像整体或局部的对比度。伽玛校正:改变图像的亮度特性,用于补偿显示器或其他硬件设备的非线性响应。锐化处理:如使用高通滤波器(如拉普拉斯算子、Sobel边缘检测算
- 如何使用 Opencv 实现人脸检测和人脸识别?
学习不断
1.人脸检测CascadeClassifier加载Opencv自带的人脸检测haarcascade_frontalface_alt.xml分类器。图像预处理cvtColor(灰度化)equalizeHist(直方图均衡化)。使用detectMultiScale函数进行识别。使用rectangle函数绘制找到的目标矩形框。在原图像上ROI截取彩色的人脸保存。2.人脸识别FaceRecognizerF
- OpenCV-42 直方图均匀化
一道秘制的小菜
OpenCVopencv人工智能计算机视觉python均值算法
目录一、直方图均匀化原理二、直方图均匀化在OpenCV中的运用一、直方图均匀化原理直方图均匀化是通过拉伸像素强度的分布范围,使得在0~255灰阶上的分布更加均匀,提高图像的对比度。达到改善图像主管视觉效果的目的。对比度较低的图像适合使用直方图均衡化的方法来增强图像细节。原理计算累计直方图将累计直方图进行区间转换在累计直方图中,概率相近的原始值,会被处理为相同的值最初的像素点都在0-7之间,最后我们
- 医学图像增强——基于同态滤波方法(Matlab代码实现)
然哥爱编程
matlab图像处理开发语言
目录1概述2运行结果3参考文献4Matlab代码1概述医学图像增强——基于同态滤波方法(Matlab代码实现)目的:改善医学图像质量,使低对比度的图像得到增强。方法:利用Matlab,采用灰度直方图均衡化和灰度直方图规定化的方法对一幅X线图像进行增强处理,并比较它们的增强效果。结果:用直方图均衡化和规定化的算法,将原始图像密集的灰度分布变得比较稀疏,处理后的图像视觉效果得以改善。直方图均衡化对于
- MATLAB环境下使用同态滤波方法进行医学图像增强
哥廷根数学学派2023
matlab计算机视觉开发语言算法图像处理机器学习
目前图像增强技术主要分为基于空间域和基于频率域2大方面,基于空间域图像增强的方法包括了直方图均衡化方法和Retinex方法等,基于频率域的方法包括同态滤波方法。其中直方图均衡化方法只是根据图像的灰度概率分布函数进行简单的全局拉伸,没有考虑像素间的灰度联系情况,进行直方图均衡化后,会在一定程度上提高图像的对比度,但是图像的灰度级会进行合并进而减少,造成细节的丢失。而Retinex方法假定空间照度是缓
- MATLAB环境下基于同态滤波方法的医学图像增强
哥廷根数学学派
信号处理图像处理深度学习matlab算法计算机视觉图像处理信号处理
目前图像增强技术主要分为基于空间域和基于频率域两大方面,基于空间域图像增强的方法包括了直方图均衡化方法和Retinex方法等,基于频率域的方法包括同态滤波方法。其中直方图均衡化方法只是根据图像的灰度概率分布函数进行简单的全局拉伸,没有考虑像素间的灰度联系情况,进行直方图均衡化后,会在一定程度上提高图像的对比度,但是图像的灰度级会进行合并进而减少,造成细节的丢失。而Retinex方法假定空间照度是缓
- 直方图均衡化原理与代码实现
SimpleLearing
opencv人工智能计算机视觉
1.简介直方图均衡化是一种用于增强图像对比度的图像处理技术。通过调整图像的灰度级别分布,直方图均衡化能够使图像中的像素值更加均匀分布,从而增强图像的细节和对比度。2.原理直方图均衡化的原理是通过调整图像的累积分布函数(CDF)来拉伸图像的灰度级别范围。这样可以使得图像的像素值在整个灰度范围内更均匀地分布。3.实现步骤以下是直方图均衡化的基本实现步骤:3.1生成直方图首先,计算原始图像的直方图,获取
- 玩转直方图处理之直方图均衡化、规定化
LiBiscuit
冒泡....双十一刚过~购物狂欢完还是要收心学习鸭!今天来说一说直方图。直方图定义:直方图是一种统计报告图,由一系列高度不等的纵向条纹或线段表示数据分布的情况。一般用横轴表示数据类型,纵轴表示分布情况。灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像元的个数。以横轴表示灰度级,以纵轴表示每一灰度级具有的像元数或该像元数占总像元数的比例值,做出的条形统计图即为灰度直方图。如以下:直方图示例.
- 14- OpenCV:像素重映射和直方图相关处理
Ivy_belief
OpenCVopencv人工智能计算机视觉
目录一、像素重映射1、像素重映射的含义2、应用场景3、相关的API(例子演示)二、直方图1、直方图的介绍2、直方图均衡化3、直方图计算4、直方图比较5、直方图反向投影一、像素重映射1、像素重映射的含义像素重映射(PixelRemapping)是一种图像处理技术,用于将图像从一个坐标系统映射到另一个坐标系统。它通常用于校正图像中的几何畸变或调整图像的大小和分辨率。在像素重映射中,每个像素的位置会被重
- 深度学习中RGB影像图的直方图均衡化python代码and对图片中指定部分做基于掩模的特定区域直方图均衡化
Laney_Midory
深度学习笔记windows深度学习python直方图均衡化
深度学习很重要的预处理步骤就是需要对做直方图均衡化其中主要分成灰度图以及RGB图的直方图均衡化这俩的方法和代码不同想要去看具体原理的朋友可以查看下面这篇博客的内容写的很详细颜色直方图均衡化(https://www.cnblogs.com/wancy/p/17668345.html)我们这个场景中会用到的就是颜色直方图均衡化了其中包含三种方法方法1.在BGR颜色空间下进行直方图均衡化,可以分别对每个
- 自适应均衡化图片
zhuyua
opencv图像处理深度学习python
引入调用opencv自带的函数进行分块的均衡化好处:不会损失图像细节代码介绍核心代码:创建CLAHE对象cv2.createCLAHE(clipLimit,tileGridSize)clipLimit:颜色对比度的阈值,可选项,默认值8titleGridSize:局部直方图均衡化的模板(邻域)大小,可选项,默认值(8,8)调用我们自定义的CLAHE对象clahe.apply(src)src:处理的
- opencv#25 直方图均衡化
许嘘嘘
计算机视觉图像处理人工智能
本节将介绍如何根据图像的直方图对图像的亮度进行调整。也就是均衡化。通过图像直方图,我们可以判断图像是否过暗或过亮,当图像直方图过多的集中在灰度值较小的区域时,那么它所表示的是图像存在过暗的情况,反之过亮。就会导致图像中的纹理信息没办法很好的显示。像素距离拉伸例如我想拉大较小值的灰度值区域,那么我们可以将较小值的灰度值区域斜率调大(改变x与y的映射关系,比如幂函数的形式)。equalizeHist(
- 数字图像处理期末速成笔记
我先去打把游戏先
笔记计算机视觉人工智能
目录一、基础知识二、相邻像素间基本关系三、图像增强方法1、直方图求解2、直方图均衡化3、直方图规定化4、图像平滑5、邻域平均法(线性)6、中值滤波法(分线性)7、中值滤波与领域平均的异同8、4-邻域平滑法9、超限像素平滑法10、灰度最相近的K个邻点平均法11、3*3模板中值滤波四、图像锐化1、微分法(梯度算子)2、微分法(Roberts算子)3、微分法(sobel算子)五、腐蚀与膨胀1、腐蚀2、膨
- Open CV 图像处理基础:(七)学习 OpenCV 的图像增强和边缘检测功能
無间行者
OpenCV图像处理学习opencvjava
在Java中学习使用OpenCV的图像增强和边缘检测功能目录在Java中学习使用OpenCV的图像增强和边缘检测功能前言图像增强功能对比度调整(Core.addWeighted())函数原型:参数说明:代码:示例直方图均衡化(Imgproc.equalizeHist())函数原型:参数说明:代码:示例边缘检测功能Canny边缘检测(Imgproc.Canny())函数原型:代码:示例总结OpenC
- python数字图像处理基础(七)——直方图均衡化、傅里叶变换
_hermit:
数字图像处理python计算机视觉开发语言
目录直方图均衡化均衡化原理均衡化效果标准直方图均衡化自适应直方图均衡化傅里叶变换原理低通滤波高通滤波直方图均衡化均衡化原理图像均衡化是一种基本的图像处理技术,通过更新图像直方图的像素强度分布来调整图像的全局对比度。这样做可以使低对比度的区域在输出图像中获得更高的对比度。简单理解:改变图像对比度,让色彩更丰富,灰度值直方图:瘦高->均衡本质上,直方图均衡化的工作原理是:1.计算图像像素强度的直方图2
- 三 (3.2 imgproc) 图像直方图
交大小丑
直方图均衡化—OpenCV2.3.2documentationhttp://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/histograms/histogram_equalization/histogram_equalization.html#histogram-equalization图像的直方图是什么?直方图是图像中
- 使用Python通过四元数傅里叶变换实现图像增强
DarthP
python计算机视觉opencv人工智能图像处理
使用Python实现图像增强通常需要以下步骤:加载图像:使用图像处理库,如OpenCV或PIL读取图像。傅里叶变换:对图像进行傅里叶变换,将图像从时域变换到频域。图像增强:在频域中应用图像增强算法,如频域滤波器,频域直方图均衡化等。傅里叶反变换:对增强后的图像进行傅里叶反变换,将图像从频域变换回时域。保存图像:将增强后的图像保存到磁盘上。以上是一般的图像增强流程,具体的代码实现可能因使用的图像处理
- 《数字图像处理》第三章 灰度变换和空间滤波 学习笔记附部分例子代码(C++ & opencv)
:铭碑于心、
《数字图像处理》学习笔记附部分实例代码实现学习笔记c++图像处理opencv
灰度变换和空间滤波前言1.变换和滤波基础2.一些基本的灰度变换函数2.1图像反转:2.2对数变换:2.3幂律变换:2.4分段线性变换函数:3.直方图处理3.1直方图均衡化3.2直方图匹配4.空间滤波基础4.1空间滤波原理4.2空间相关与卷积5.平滑空间滤波器5.1平滑线性滤波5.2统计排序(非线性)滤波器opencv的补充:前言本系列博客参考书为,数字图像处理第三版-冈萨雷斯第三版教材中图片下载地
- Python图像处理【16】OpenCV直方图均衡化
AI technophile
python图像处理opencv
OpenCV直方图均衡化0.前言1.直方图均衡化算法2.全局直方图均衡化2.1使用最小-最大归一化缩放CDF2.2将输入RGB图像转换为LAB空间3.自适应直方图均衡化3.1算法原理3.2使用OpenCV执行自适应直方图均衡化4.直方图均衡化结果小结系列链接0.前言对比度拉伸/直方图均衡化使用单调非线性映射重新分配输入图像中的像素强度值,以使输出图像具有均匀的强度分布(平坦直方图),从而增强图像的
- AE (4)_ 直方图调整的理论
search7
图像调试图像处理cameratuning
#灵感#在短暂的高通平台调试中,很看重直方图调整的理解。后来其它平台,不怎么调整这个了。但还是记录一下。我个人还是倾向招式简单,但应用到极致。绝大部分内容来自:刘斯宁,ImageEnhancement-CLAHE-知乎(zhihu.com)穿插个人的部分理解。目录英文解释:对比度:简单---对比度拉伸:升级---直方图均衡化HE:直方图均衡的局限:改进---自适应直方图均衡化(AHE):高通平台的
- 国科大2023.12.28图像处理0854最后一节划重点
智商欠费,不死也废
期末图像处理人工智能
国科大图像处理2023速通期末——汇总2017-2019图像处理王伟强作业课件资料第1、2章不考第3章空间域图像增强3.2基本灰度变换(考过填空)3.2.1图像反转3.2.2对数变换3.2.3幂次变换3.3直方图处理3.3.1直方图均衡化(大题计算)3.3.2直方图匹配(规定化)3.3.3不看3.3.4不看3.4不看3.5空间滤波基础(重点什么题,没听清)卷积重中之重3.6平滑空间滤波器(什么什么
- OpenCV-Python(22):直方图均衡化
图灵追慕者
opencv-pythonopencv计算机视觉直方图均衡化
直方图术语在图像处理和计算机视觉中,与直方图相关的一些术语包括:灰度直方图(Gray-levelhistogram):用于描述图像中各个灰度级别的像素数量分布。彩色直方图(Colorhistogram):用于描述图像中各个颜色通道的像素数量分布,如红色通道、绿色通道和蓝色通道。亮度直方图(Luminancehistogram):用于描述图像中各个亮度级别的像素数量分布。色彩直方图(Colorhis
- 数字图像处理-空间域图像增强-爆肝18小时用通俗语言进行超详细的总结
亿维数组
超高质量总结文章DigitalImageProcessing计算机视觉数字图像处理学习笔记
目录灰度变换直方图(Histogram)直方图均衡直方图匹配(规定化)空间滤波低通滤波器高通滤波器本文章讲解数字图像处理空间域图像增强,大部分内容来源于课堂笔记中灰度变换图像增强:对图像进行处理,使其更适合于某种特定的应用,有空间域图像增强和变换域图像增强空间域图像增强是在图像的像素级别进行操作的一种方法。它直接对图像的原始像素值进行处理,常见的空间域增强技术包括直方图均衡化、滤波(如均值滤波、中
- 数字图像处理——局部直方图处理【像素级别处理】(python)
Gowi_fly
数字图像处理
数字图像处理——局部直方图均衡化【像素级别处理】(python)局部直方图处理是弄一个略大于图片的矩阵,超过图片的部分用0来代替像素值,在这个局部进行直方图均衡化。输入:importcv2importnumpyasnpimportmatplotlib.pyplotaspltimportdatetime#局部直方图处理3.3.3节#使用3*3的领域处理img=cv2.imread('Fig0326.
- 图像色彩还原算法
LittroInno
机器学习深度学习图像处理
图像色彩还原算法的目标是改善或修复图像中失真、退色或其他色彩问题。以下是一些常见的图像色彩还原算法:白平衡算法:白平衡算法旨在校正图像中的色温,使其看起来更自然。其中一种简单的方法是灰度世界假设,即假设整个图像的平均亮度应为灰度。其他方法包括基于灰度世界的自适应方法和基于最小均方差的方法。直方图均衡化:直方图均衡化是一种用于增强图像对比度的方法,可以在某些情况下改善图像的色彩还原。然而,它可能引入
- 关于halcon的图像平滑、去噪几种方法及算子介绍
icecream_cheese
图像处理算法计算机视觉
图像增强看这。阈值分割看这。直方图均衡化直方图均衡化的一般是处理图像偏暗、偏亮、以及亮度过于集中等现象https://zhuanlan.zhihu.com/p/54771264方法的基本思想是对在图像中像素个数多的灰度级进行展宽,而对像素个数少的灰度级进行缩减。从而达到清晰图像的目的。halcon中直方图均衡化一般是用这两个算子gray_histo(Region,ImageEquHisto,Abs
- 直方图均衡的计算
Gowi_fly
数字图像处理图像处理
直方图均衡的计算一幅8灰度级图像具有如下所示的直方图,求直方图均衡后的灰度级和对应概率,并画出均衡后的直方图的示意图。(图中的8个不同灰度级对应的归一化直方图为[0.170.250.210.160.070.080.040.02])当然,让我们通过数学计算来完成直方图均衡化的过程。直方图均衡化是一个通过调整图像中灰度级的分布以改善整体对比度的过程。在这个例子中,我们有8个灰度级,其对应的归一化直方图
- itk中的一些图像处理
努力减肥的小胖子5
ITK图像处理计算机视觉python
文章目录1.BinomialBlurImageFilter计算每个维度上的最近邻居平均值2.高斯平滑3.图像的高阶导数RecursiveGaussianImageFilter4.均值滤波5.中值滤波6.离散高斯平滑7.曲率驱动流去噪图像CurvatureFlowImageFilter8.由参数alpha和beta控制的幂律自适应直方图均衡化9.Canny边缘检测10.Sobel边缘检测和基于过零的
- matlab实验一 图像增强
裴裴裴之Miraitowa
图像增强matlab图像处理
实验一图像增强一、实验目的二、实验环境三、相关函数四、实验内容:一.灰度变换二.空域滤波三.频域增强一、实验目的熟悉及掌握图像的灰度转换。理解直方图的概念及应用,实现图像直方图的显示,及通过直方图均衡化方法对图像进行修正。熟悉并掌握平滑空间滤波器;熟悉并掌握锐化空间滤波器。熟悉及掌握图像的变换原理及性质,实现图像的傅里叶变换。理解并掌握常用的图像频域增强技术。二、实验环境MATLABR2010b版
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs