https://cloud.tencent.com/developer/article/1539420
众所周知,数据库很容易成为应用系统的瓶颈。单机数据库的资源和处理能力有限,在高并发的分布式系统中,可采用分库分表突破单机局限。本文总结了分库分表的相关概念、全局ID的生成策略、分片策略、平滑扩容方案、以及流行的方案。
1 分库分表概述
在业务量不大时,单库单表即可支撑。
当数据量过大存储不下、或者并发量过大负荷不起时,就要考虑分库分表。
1.1 分库分表相关术语
(1) 垂直分表: 竖向切分,不同分表存储不同的字段,可以把不常用或者大容量、或者不同业务的字段拆分出去;
(2) 水平分表(最复杂): 横向切分,按照特定分片算法,不同分表存储不同的记录。
1.2 真的要采用分库分表?
需要注意的是,分库分表会为数据库维护和业务逻辑带来一系列复杂性和性能损耗,除非预估的业务量大到万不得已,切莫过度设计、过早优化。
规划期内的数据量和性能问题,尝试能否用下列方式解决:
2.1 自动增长列
优点:数据库自带功能,有序,性能佳。
缺点:单库单表无妨,分库分表时如果没有规划,ID可能重复。解决方案:
2.1.1 设置自增偏移和步长
## 假设总共有 10 个分表
## 级别可选: SESSION(会话级), GLOBAL(全局)
SET @@SESSION.auto_increment_offset = 1; ## 起始值, 分别取值为 1~10
SET @@SESSION.auto_increment_increment = 10; ## 步长增量
如果采用该方案,在扩容时需要迁移已有数据至新的所属分片。
2.1.2 全局ID映射表
在全局 Redis 中为每张数据表创建一个 ID 的键,记录该表当前最大 ID;
每次申请 ID 时,都自增 1 并返回给应用;
Redis 要定期持久至全局数据库。
2.2 UUID(128位)
在一台机器上生成的数字,它保证对在同一时空中的所有机器都是唯一的。通常平台会提供生成UUID的API。
UUID 由4个连字号(-)将32个字节长的字符串分隔后生成的字符串,总共36个字节长。形如:550e8400-e29b-41d4-a716-446655440000。
UUID 的计算因子包括:以太网卡地址、纳秒级时间、芯片ID码和许多可能的数字。
UUID 是个标准,其实现有几种,最常用的是微软的 GUID(Globals Unique Identifiers)。
优点:简单,全球唯一;
缺点:存储和传输空间大,无序,性能欠佳。
2.3 COMB(组合)
参考资料:The Cost of GUIDs as Primary Keys
组合 GUID(10字节) 和时间(6字节),达到有序的效果,提高索引性能。
2.4 Snowflake(雪花) 算法
参考资料:twitter/snowflake,Snowflake 算法详解
Snowflake 是 Twitter 开源的分布式 ID 生成算法,其结果为 long(64bit) 的数值。
其特性是各节点无需协调、按时间大致有序、且整个集群各节点单不重复。
该数值的默认组成如下(符号位之外的三部分允许个性化调整):
3 分片策略
3.1 连续分片
根据特定字段(比如用户ID、订单时间)的范围,值在该区间的,划分到特定节点。
水平分库分表切分规则
RANGE
从0到10000一个表,10001到20000一个表;
HASH取模
一个商场系统,一般都是将用户,订单作为主表,然后将和它们相关的作为附表,这样不会造成跨库事务之类的问题。 取用户id,然后hash取模,分配到不同的数据库上。
地理区域
比如按照华东,华南,华北这样来区分业务,七牛云应该就是如此。
时间
按照时间切分,就是将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据 被查询的概率变小,所以没必要和“热数据”放在一起,这个也是“冷热数据分离”。
优点:集群扩容后,指定新的范围落在新节点即可,无需进行数据迁移。
缺点:如果按时间划分,数据热点分布不均(历史数冷当前数据热),导致节点负荷不均。
3.3 ID取模分片
缺点:扩容后需要迁移数据。
3.2 一致性Hash算法
优点:扩容后无需迁移数据。
3.4 Snowflake 分片
优点:扩容后无需迁移数据。
4 分库分表引入的问题
4.1 分布式事务
参见 分布式事务的解决方案
由于两阶段/三阶段提交对性能损耗大,可改用事务补偿机制。
4.2 跨节点 JOIN
对于单库 JOIN,MySQL 原生就支持;
对于多库,出于性能考虑,不建议使用 MySQL 自带的 JOIN,可以用以下方案避免跨节点 JOIN:
另外,某个 ID 的用户信息在哪个节点,他的关联数据(比如订单)也在哪个节点,可以避免分布式查询。
4.3 跨节点聚合
只能在应用程序端完成。
但对于分页查询,每次大量聚合后再分页,性能欠佳。
4.4 节点扩容
节点扩容后,新的分片规则导致数据所属分片有变,因而需要迁移数据。
5 节点扩容方案
相关资料: 数据库秒级平滑扩容架构方案
5.1 常规方案
如果增加的节点数和扩容操作没有规划,那么绝大部分数据所属的分片都有变化,需要在分片间迁移:
5.2 免迁移扩容
采用双倍扩容策略,避免数据迁移。扩容前每个节点的数据,有一半要迁移至一个新增节点中,对应关系比较简单。
具体操作如下(假设已有 2 个节点 A/B,要双倍扩容至 A/A2/B/B2 这 4 个节点):
6 分库分表方案
6.1 代理层方式
部署一台代理服务器伪装成 MySQL 服务器,代理服务器负责与真实 MySQL 节点的对接,应用程序只和代理服务器对接。对应用程序是透明的。
比如 MyCAT,官网,源码,参考文档:MyCAT+MySQL 读写分离部署
MyCAT 后端可以支持 MySQL, SQL Server, Oracle, DB2, PostgreSQL等主流数据库,也支持MongoDB这种新型NoSQL方式的存储,未来还会支持更多类型的存储。
MyCAT 不仅仅可以用作读写分离,以及分表分库、容灾管理,而且可以用于多租户应用开发、云平台基础设施,让你的架构具备很强的适应性和灵活性。
6.2 应用层方式
处于业务层和 JDBC 层中间,是以 JAR 包方式提供给应用调用,对代码有侵入性。主要方案有:
(1)淘宝网的 TDDL: 已于 2012 年关闭了维护通道,建议不要使用。
TDDL:https://www.cnblogs.com/kaleidoscope/p/9757043.html
(2)当当网的 Sharding-JDBC: 仍在活跃维护中:
https://shardingsphere.apache.org/document/current/cn/quick-start/sharding-jdbc-quick-start/
是当当应用框架 ddframe 中,从关系型数据库模块 dd-rdb 中分离出来的数据库水平分片框架,实现透明化数据库分库分表访问,实现了 Snowflake 分片算法;
Sharding-JDBC定位为轻量Java框架,使用客户端直连数据库,无需额外部署,无其他依赖,DBA也无需改变原有的运维方式。
Sharding-JDBC分片策略灵活,可支持等号、between、in等多维度分片,也可支持多分片键。
SQL解析功能完善,支持聚合、分组、排序、limit、or等查询,并支持Binding Table以及笛卡尔积表查询。
Sharding-JDBC直接封装JDBC API,可以理解为增强版的JDBC驱动,旧代码迁移成本几乎为零: