- 在Hadoop集群中实现数据安全:技术与策略并行
Echo_Wish
实战高阶大数据hadoop大数据分布式
在Hadoop集群中实现数据安全:技术与策略并行随着大数据技术的广泛应用,Hadoop已经成为处理和存储海量数据的首选平台。然而,随着数据规模的扩大,如何确保Hadoop集群中的数据安全也成为了亟待解决的难题。毕竟,数据安全不仅关系到企业的隐私保护,也直接影响到数据的可信度与可用性。本文将探讨如何在Hadoop集群中实现数据安全,分析数据加密、访问控制、审计日志等方面的技术与策略,并通过一些具体的
- 音视频合成功能
场景描述类似音视频配音功能,适用于给视频配音,配乐。场景1:输入一个视频文件和一个音频文件,将他们合成1个视频文件,要求音频文件合成到视频制定的时间范围。场景2:输入一个视频文件和多个音频文件,将他们合成1个视频文件,要求将多个音频文件合成到视频制定的时间范围。2.1多个音频文件串行合成。2.2多个音频文件并行合成。备注:多个音频文件编码类型要一致,还要确保封装格式是支持的。方案描述TS侧通过XC
- 50 【Go版本变化】
weixin_30270561
runtimegolangc/c++
Go的版本介绍:https://golang.org/project/https://golang.org/doc/go1.4#Go1.4#语言层面变化较少,但是编译器而言是有巨大的突破的,体现在指针间的转换。这个release核心聚焦在实现工作上,重点是garbagecollector(垃圾回收)和并行处理的垃圾回收器,这些改动也会在之后的几个版本中不断优化。并且,栈区是连续的,需要内存时能真实
- Python面试题:解释一下什么是 Python 的 GIL(全局解释器锁)
杰哥在此
Python系列python开发语言
Python的GIL(GlobalInterpreterLock,全局解释器锁)是CPython解释器中的一个机制,它限制了在任何给定的时刻只有一个线程能够执行Python字节码。这意味着,即使在多核处理器上,Python程序也不能通过多线程实现真正的并行执行。GIL的背景GIL是由CPython解释器实现的,它是为了简化内存管理而引入的。Python中的对象管理(特别是引用计数)不是线程安全的,
- 【Stable Diffusion部署至GNU/Linux】安装流程
星星点点洲
stablediffusion
以下是安装StableDiffusion的步骤,以Ubuntu22.04LTS为例子。显卡与计算架构介绍CUDA是NVIDIAGPU的专用并行计算架构技术层级说明CUDAToolkit提供GPU编译器(nvcc)、数学库(cuBLAS)等开发工具cuDNN深度神经网络加速库(需单独下载)GPU驱动包含CUDADriver(需与CUDAToolkit版本匹配)CUDA与NIDIA:硬件指令集绑定:N
- Multi-Thread多线程
yadanuof
yy的学习之路javalinux服务器
线程基础知识线程和进程的区别进程是正在运行程序的实例,进程中包含了线程,每个线程执行不同的任务不同的进程使用不同的内存空间,同一进程下的线程共享内存空间线程更轻量,线程上下文切换成本一般上要比进程上下文切换低(上下文切换指的是从一个线程切换到另一个线程)并行与并发的区别并行是指多个CPU分别处理多个线程的能力并发是指多个线程轮流使用CPU的能力线程创建的方式继承Thread类实现runnable接
- 【Java进阶篇】——第9篇:Lambda表达式与Stream API
猿享天开
Java开发从入门到精通java开发语言
第9篇:Lambda表达式与StreamAPIJava8引入的Lambda表达式和StreamAPI是函数式编程范式的核心特性,彻底改变了Java代码的编写方式。它们简化了集合操作、提升了代码可读性,并通过并行处理优化了性能。本文将从基础语法到实战应用,系统解析Lambda与Stream的核心概念,并结合实际案例展示其强大能力。1.Lambda表达式基础Lambda表达式本质上是一个匿名函数,用于
- pdsh 2.29 源码编译安装教程
云墨丹青
windowsssh
pdsh2.29源码编译安装教程简介pdsh(ParallelDistributedShell)是一个高效的多服务器并行shell命令执行工具。本文将详细介绍如何从源码编译安装pdsh2.29版本。环境要求Linux操作系统gcc编译器make工具足够的磁盘空间(建议至少1GB可用空间)安装步骤1.下载源码包首先,下载pdsh2.29的源码包:wgethttps://storage.googlea
- Flink-k8s弹性扩缩容原理和部署步骤
spring208208
flinkkubernetes贪心算法
背景和现状目前行内提交flink作业采用Nativekubernetes模式,提交作业时会指定并行度和taskmanager使用的内存及cpu数量。这种情况下会导致在作业运行高峰可能存在资源不足问题运行低峰又会造成资源浪费,这种粗放的使用资源的模式在实时计算业务量不多的时候还可以勉强接受,而随着实时计算业务的增多,则会造成大量的资源浪费和性能瓶颈。为了使存储和计算资源得到更加合理有效的使用,能跟据
- 清华大学KVCache.AI团队联合趋境科技联合的KTransformers开源项目为什么那么厉害
魔王阿卡纳兹
IT杂谈人工智能科技开源清华DeepSeek趋境科技KTransformers
KTransformers是一个由清华大学KVAV.AI团队开发的开源项目,旨在优化大语言模型(LLM)的推理性能,特别是在有限显存资源下运行大型模型。以下是KTransformers的详细介绍:1.核心特点高性能优化:KTransformers通过内核级优化、多GPU并行策略和稀疏注意力等技术,显著加速模型推理速度,降低硬件门槛。灵活扩展性:KTransformers是一个以Python为中心的
- 软件架构设计分层架构与 PO、VO、DTO、BO、POJO、BO/DO、DAO
s_nshine
架构povodto高内聚低耦合
某位计算机大师说过:计算机科学领域任何问题,都可以间接的通过添加一个中间层来解决.什么是架构?先引用《系统架构:复杂系统的产品设计与开发》里面的一句话:结构良好的创造活动要优于毫无结构的创造活动。架构始于建筑,是因为人类发展(原始人自给自足住在树上,也就不需要架构),分工协作的需要,将目标系统按某个原则进行切分,切分的原则,是要便于不同的角色进行并行工作。一般而言,软件系统的架构(Architec
- 明远智睿核心板在智能家居与工业网关中的应用实践
myzr123
智能家居
**——从硬件支持到场景落地的技术路径**SSD2351在智能家居与工业物联网领域,设备需具备实时响应、多协议兼容及边缘计算能力。明远智睿新款核心板凭借其硬件特性,可高效支撑以下典型场景:####**场景一:智能家居中枢网关****需求**:整合Zigbee、Wi-Fi、蓝牙等多协议设备,并实现本地化逻辑控制(如离家模式自动关灯)。**方案优势**:-四核A35的并行处理能力可同时运行协议转换、规
- 深度学习基础知识
namelijink
深度学习人工智能
cuda简介:CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的一种并行计算平台和应用程序编程接口(API)。它允许开发人员利用NVIDIA的GPU(图形处理器)来加速各种计算任务,包括科学计算、机器学习、深度学习、数据分析等。NVIDIA是一个全球领先的计算技术公司,专注于设计和制造高性能计算设备。除了生产强大的GPU,NVIDIA还提供与其GPU
- Python 并发处理
亚图跨际
Pythonpython并发编程
特点介绍了一些最流行的库和框架,并深入探讨了如何将这些库用于您自己的高并发、高性能Python程序介绍了能够用Python编写您自己的并发和并行软件系统所需的并发的基本概念介绍调试和异常处理等概念,以及一些允许您创建事件驱动和反应式系统的最流行的库和框架内容加快速度并行化线程的生命线程间同步线程之间的通信调试和基准测试执行和池多进程事件驱动编程反应式编程使用GPU选择解决方案详情参阅-亚图跨际
- 16、单片机串口原理与应用
Geek@Yang
STM8S单片机学习笔记单片机串口原理
文章目录1、什么是计算机通信2、并行通信方式3、串行通信方式4、串行同步通信原理5、串行异步通信原理6、串行异步通信的数据格式7、串行通信的错误校验8、波特率和比特率9、RS-232串口通讯原理图10、RS-232标准接口主要引脚定义11、采用RS-232接口存在的问题12、串行通信的传输方向13、RS-232点对点通信硬件连接方法14、RS-232多机通信硬件连接方法1、什么是计算机通信 计算
- Bengio新作Aaren:探索Transformer性能与RNN效率的融合
AI记忆
深度学习论文与相关应用transformerrnn深度学习AarenBengio
论文链接:https://arxiv.org/pdf/2405.13956一、摘要总结:本文提出了一种新的注意力机制,名为Aaren,它将注意力视为一种特殊的递归神经网络(RNN),能够高效地计算其多对一RNN输出。Aaren不仅能够并行训练,而且能够在推理时高效地更新新令牌,仅需要常数内存。实验表明,Aaren在四个流行的序列问题设置(强化学习、事件预测、时间序列分类和时间序列预测)的38个数据
- 发文新思路!双通道CNN的惊人突破,准确率接近100%!
沃恩智慧
深度学习人工智能cnn人工智能神经网络
双通道CNN作为一种创新的卷积神经网络架构,正引领深度学习领域的新趋势。其核心优势在于并行卷积层设计,能够同时处理更多特征信息,从而显著提升模型的特征表示能力和识别精度。这种架构不仅提高了计算效率,还有效降低了过拟合风险,使其在复杂视觉任务中表现卓越。例如,最新的研究提出了一种名为DDTransUNet的混合网络,结合了Transformer和CNN的优势,通过双分支编码器和双重注意力机制,有效解
- 【笔记】使用 Pytorch 进行分布式训练
LittleNyima
人工智能深度学习pytorch分布式
本文原文以CCBY-NC-SA4.0许可协议发布于技术相关|使用Pytorch进行分布式训练,转载请注明出处。其实Pytorch分布式训练已经不算什么新技术了,之所以专门写一篇blog是因为今天训模型的时候出现了一个没见过的问题,在调试的时候发现自己平时都是用别人写好的分布式代码,没有深入研究过其中的实现细节,因此感觉有必要整理吸收一下。最简单的数据并行作为最简单的并行计算方式,使用nn.Data
- python 并行框架_基于python的高性能实时并行机器学习框架之Ray介绍
weixin_39778582
python并行框架
前言加州大学伯克利分校实时智能安全执行实验室(RISELab)的研究人员已开发出了一种新的分布式框架,该框架旨在让基于Python的机器学习和深度学习工作负载能够实时执行,并具有类似消息传递接口(MPI)的性能和细粒度。这种框架名为Ray,看起来有望取代Spark,业界认为Spark对于一些现实的人工智能应用而言速度太慢了;过不了一年,Ray应该会准备好用于生产环境。目前ray已经发布了0.3.0
- python使用ray框架改进原有代码,实现多进程与分布式
呆萌的代Ma
pythonpython
安装依赖:pipinstall-ihttps://mirrors.aliyun.com/pypi/simple/'ray[default]'ray框架可以在几乎不改变现有代码的基础上实现分布式与并行计算!!改变的只有传值的方式,与每个函数加上装饰器即可对于常规的循环任务defexponentiation_test(a,b):importtimetime.sleep(1)#这里是为了看是否是真正的多
- 1.1、Ray-关键概念Key Concepts
MaxCode-1
Ray计算框架RayActorspython
1.1、关键概念KeyConcepts关键概念KeyConcepts本节概述了Ray的关键概念。这些基元协同工作,使Ray能够灵活地支持广泛的分布式应用。任务TasksRay使任意的函数能够在独立的Python工作者上异步执行。这些异步的Ray函数被称为“任务”。Ray使任务能够指定其在CPU、GPU和自定义资源方面的资源需求。这些资源请求被集群调度器用来在整个集群中分配任务,以实现并行执行。参见
- 《探秘Hogwild!算法:无锁并行SGD的神奇之路》
人工智能深度学习
在深度学习和机器学习的领域中,优化算法的效率和性能一直是研究的重点。Hogwild!算法作为一种能够实现无锁并行随机梯度下降(SGD)的创新方法,受到了广泛关注。下面就来深入探讨一下Hogwild!算法是如何实现这一壮举的。基础原理铺垫随机梯度下降(SGD)算法是基于梯度下降算法产生的常见优化算法。其目标是优化损失函数,通过对每一个超参数求偏导得到当前轮的梯度,然后向梯度的反方向更新,不断迭代以获
- Python 魔法学院 - 第24篇:Python 解释器优化 ⭐⭐⭐
星核日记
《Python魔法学院》python开发语言pycharmwindowsPython性能优化
目录引言1.Cython与PyPy1.1Cython1.1.1Cython的优势1.1.2Cython的简单示例1.1.3Cython的适用场景1.2PyPy1.2.1PyPy的优势1.2.2PyPy的简单示例1.2.3PyPy的适用场景1.3Cython与PyPy的对比2.并行计算与分布式计算2.1并行计算2.1.1multiprocessing模块2.1.2concurrent.futures
- 警告accumulate and all-reduce gradients in fp32 for bfloat16 data type
NLstudy33
python
这条警告信息是关于分布式训练中的通信优化策略的,具体涉及流水线并行(PipelineParallelism)和点对点通信(P2PCommunication)。以下是对这条警告的详细解释:###**警告内容**```WARNING:Settingargs.overlap_p2p_commtoFalsesincenon-interleavedscheduledoesnotsupportoverlapp
- Golang的并发编程问题解决思路
caihuayuan4
面试题汇总与解析springsqljava大数据
Golang的并发编程问题解决思路一、并发编程基础并发与并行在计算机领域,“并发”和“并行”经常被混为一谈,但它们有着不同的含义。并发是指一段时间内执行多个任务,而并行是指同时执行多个任务。在Golang中,通过goroutines实现并发、通过通道实现并行,使得并发编程变得简单而高效。是作为Go语言并发体系的核心而引入的概念,它是一种比线程更加轻量级的并发单元。可以使用关键字go来启动一个新的g
- 大脑神经网络与机器神经网络的区别
天机️灵韵
具身智能人工智能具身智能
大脑神经网络(生物神经网络)与机器神经网络(人工神经网络,ANN)虽然名称相似,但在结构、功能、学习机制等方面存在显著差异。以下是两者的主要区别:1.基础结构与组成大脑神经网络:由生物神经元(约860亿个)通过突触连接形成动态网络。神经元通过电化学信号(动作电位)和神经递质传递信息。具有高度的可塑性(突触可增强或削弱),支持终身学习和适应。网络结构复杂,包含分层(如大脑皮层)和并行处理机制。机器神
- 我国化学信息学研究的地位与近期研究进展
xoaxo
算法优化生物数据库网络工作
近两年来,我国的化学信息学研究得到了快速发展,在某些专题的研究方面达到了国际前沿水平。在理论与计算化学研究中,基于第一性原理的新型并行计算方法被提出并用于纳米材料电子结构的高效计算[24],轨道分解方法被用来简化磁性质的四分量相对论计算[25]。同时,量化计算被越来越多地应用于团簇优化[26]及材料性质的预测[27],并越来越注重与实际结合用于反应过程过渡态和催化机理研究[28]。此外,密度泛函理
- 分布式训练三大并行策略:数据、模型与流水线并行的本质解析
WHCIS
#分布式训练人工智能与机器学习分布式人工智能深度学习
截至2023年,大型语言模型的参数量已突破万亿级别(如GooglePaLM2达到3400亿参数),单卡显存容量(NVIDIAA10080GB)与计算能力(312TFLOPS)面临严峻挑战。分布式训练通过多维度并行策略实现:算力维度:聚合多卡计算能力存储维度:分布式参数存储通信维度:优化数据传输路径本文将深入剖析三大并行策略的数学本质。一、数据并行:分布式优化的数学基础1.1同步SGD的收敛性证明定
- Flink-提交job
笨鸟先-森
大数据flink
目录一、Flink流处理扩展及说明二、Flink部署三、Standalone模式四、在命令行提交job:五、在网页中提交flinkjob一、Flink流处理扩展及说明涉及:自定义线程优先级=socket流中读取数据并行度只能是11、特定的算子设定了并行度最优先2、算子没有设定并行度就是用整体运行环境设置的并行度3、环境的并行度没有设置就使用提交时候提交参数设置的并行度4、都没有设置就遵循flink
- GPU(Graphics Processing Unit)详解
美好的事情总会发生
AI人工智能嵌入式硬件硬件工程ai
GPU(GraphicsProcessingUnit)详解1.GPU的定义与核心特性GPU(图形处理器)是一种专为并行计算和图形渲染优化的处理器。与CPU(中央处理器)不同,GPU通过大规模并行架构实现高效处理海量数据,尤其在处理规则化、高并发任务时性能显著优于CPU。关键特性:高并行度:现代GPU包含数千个计算核心(如NVIDIAH100拥有18,432个CUDA核心)。专用内存系统:配备高带宽
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交