算法训练营第五十六天||● 583. 两个字符串的删除操作 ● 72. 编辑距离 ● 编辑距离总结篇

● 583. 两个字符串的删除操作

这道题涉及到两个字符串删除操作,注意递推公式,理解不到位,需要再次做

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

这里dp数组的定义有点点绕,大家要撸清思路。

  1. 确定递推公式
  • 当word1[i - 1] 与 word2[j - 1]相同的时候
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。

  1. dp数组如何初始化

从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。

class Solution {
public:
    int minDistance(string word1, string word2) {
        //dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。
        vector> dp(word1.size()+1,vector (word2.size()+1,0));
        for(int i = 0;i

● 72. 编辑距离 

这道题和之前讲的三四道题类似,都是一步一步递增的,之后需要继续看

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector> dp(word1.size()+1,vector(word2.size()+1,0));
        for(int i = 0;i<=word1.size();i++) dp[i][0] = i;
        for(int j = 0;j<=word2.size();j++) dp[0][j] = j;
        for(int i = 1;i<=word1.size();i++){
            for(int j = 1;j<=word2.size();j++){
                if(word1[i-1]==word2[j-1]){
                    dp[i][j] = dp[i-1][j-1];
                }else{
                    dp[i][j] = min(dp[i-1][j],min(dp[i][j-1],dp[i-1][j-1]))+1;
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }
};

● 编辑距离总结篇 

1.判断子序列

if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = dp[i][j - 1];

2.不同的子序列

if (s[i - 1] == t[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
    dp[i][j] = dp[i - 1][j];
}

3.两个字符串的删除操作

if (word1[i - 1] == word2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1];
} else {
    dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
}

4.编辑距离

if (word1[i - 1] == word2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1];
}
else {
    dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}

你可能感兴趣的:(代码随想录一刷,算法,leetcode,数据结构)