算法提高课笔记
在第一个部分里是图内部点的搜索,每个点只能搜一次,因此搜过的点不需要恢复到原来的(还没被搜过的)状态(意思就是st数组不恢复)
而第二个部分是点的集合之间的搜索,每次搜索完一定要恢复到原有状态才可以进行下一步搜索(意思就是st数组每次需要恢复原状)
原题链接
一天Extense在森林里探险的时候不小心走入了一个迷宫,迷宫可以看成是由 n∗n 的格点组成,每个格点只有2种状态,.和#,前者表示可以通行后者表示不能通行。
同时当Extense处在某个格点时,他只能移动到东南西北(或者说上下左右)四个方向之一的相邻格点上,Extense想要从点A走到点B,问在不走出迷宫的情况下能不能办到。
如果起点或者终点有一个不能通行(为#),则看成无法办到。
注意:A、B不一定是两个不同的点。
输入格式
第1行是测试数据的组数 k,后面跟着 k 组输入。
每组测试数据的第1行是一个正整数 n,表示迷宫的规模是 n∗n 的。
接下来是一个 n∗n 的矩阵,矩阵中的元素为.或者#。
再接下来一行是 4 个整数 ha,la,hb,lb,描述 A 处在第 ha 行, 第 la 列,B 处在第 hb 行, 第 lb 列。
注意到 ha,la,hb,lb 全部是从 0 开始计数的。
输出格式
k行,每行输出对应一个输入。
能办到则输出“YES”,否则输出“NO”。
数据范围
1 ≤ n ≤ 100
输入样例
2
3
.##
..#
#..
0 0 2 2
5
.....
###.#
..#..
###..
...#.
0 0 4 0
输出样例
YES
NO
给出一张图两个点,问能不能从一个点走到另一个点
直接bfs遍历看能不能从一个点遍历到另一个
#include
using namespace std;
const int N = 110;
int n;
char g[N][N]; // 存图
int xa, ya, xb, yb; // 标记起点终点
int dx[4] = {0, 0, 1, -1}, dy[4] = {1, -1, 0, 0};
bool st[N][N]; // 判重
bool dfs(int x, int y)
{
if (g[x][y] == '#') return false;
if (x == xb && y == yb) return true;
st[x][y] = true;
for (int i = 0; i < 4; i ++ ) // 遍历四个操作
{
int a = x + dx[i], b = y + dy[i];
if (a < 0 || a >= n || b < 0 || b >= n) continue; // 位置不合法
if (st[a][b]) continue; // 已遍历
if (dfs(a, b)) return true;
}
return false;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
int t;
cin >> t;
while (t -- )
{
cin >> n;
for (int i = 0; i < n; i ++ ) cin >> g[i];
cin >> xa >> ya >> xb >> yb;
memset(st, false, sizeof st);
if (dfs(xa, ya)) cout << "YES\n";
else cout << "NO\n";
}
}
原题链接
有一间长方形的房子,地上铺了红色、黑色两种颜色的正方形瓷砖。
你站在其中一块黑色的瓷砖上,只能向相邻(上下左右四个方向)的黑色瓷砖移动。
请写一个程序,计算你总共能够到达多少块黑色的瓷砖。
输入格式
输入包括多个数据集合。
每个数据集合的第一行是两个整数 W 和 H,分别表示 x 方向和 y 方向瓷砖的数量。
在接下来的 H 行中,每行包括 W 个字符。每个字符表示一块瓷砖的颜色,规则如下
1)‘.’:黑色的瓷砖;
2)‘#’:红色的瓷砖;
3)‘@’:黑色的瓷砖,并且你站在这块瓷砖上。该字符在每个数据集合中唯一出现一次。
当在一行中读入的是两个零时,表示输入结束。
输出格式
对每个数据集合,分别输出一行,显示你从初始位置出发能到达的瓷砖数(记数时包括初始位置的瓷砖)。
数据范围
1 ≤ W , H ≤ 20
输入样例
6 9
....#.
.....#
......
......
......
......
......
#@...#
.#..#.
0 0
输出样例
45
一个图分为红黑方块,问某一个黑方块的连通块个数
本质上是个Flood Fill问题,可以用BFS实现
用DFS也是一样的,只是搜索顺序不一样
#include
using namespace std;
const int N = 25;
int n, m;
char g[N][N]; // 存图
bool st[N][N]; // 判重
int dx[4] = {0, 0, -1, 1}, dy[4] = {1, -1, 0, 0};
int dfs(int x, int y)
{
int cnt = 1;
st[x][y] = true;
for (int i = 0; i < 4; i ++ )
{
int a = x + dx[i], b = y + dy[i];
if (a < 0 || a >= n || b < 0 || b >= m) continue; // 位置不合法
if (g[a][b] != '.') continue; // 不是黑色的
if (st[a][b]) continue; // 已遍历
cnt += dfs(a, b);
}
return cnt;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
while (cin >> m >> n, n || m)
{
for (int i = 0; i < n; i ++ ) cin >> g[i];
int x, y;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < m; j ++ )
if (g[i][j] == '@') // 找起点
{
x = i;
y = j;
}
memset(st, false, sizeof st);
cout << dfs(x, y) << '\n';
}
}