自监督去噪:Noise2Void原理和调用(Tensorflow)

自监督去噪:Noise2Void原理和调用(Tensorflow)_第1张图片

文章原文: https://arxiv.org/abs/1811.10980
N2V源代码: https://github.com/juglab/n2v
参考博客:

  • https://zhuanlan.zhihu.com/p/445840211
  • https://zhuanlan.zhihu.com/p/133961768
  • https://zhuanlan.zhihu.com/p/563746026

文章目录

    • 1. 方法原理
      • 1.1 Noise2Noise回顾
      • 1.2 方法简介
        • (1)噪声独立假设和其他假设
        • (2)patch-based CNN
        • (3)patch-based Noise2Noise
        • (4)patch-based view in single Image
    • 2. 实验细节及结果
      • 2.1 实验细节
      • 2.2 实验结果
    • 3. 代码整理
      • 3.1 网络结构
      • 3.2 数据整理(Mask部分,核心)
      • 3.3 例子
    • 4. 总结

1. 方法原理

1.1 Noise2Noise回顾

可以参考自监督去噪:Noise2Noise原理及实现(Pytorch)

Noise2Noise可以不需要干净的数据集,但是存在两个主要矛盾

  • 需要配对的噪声数据集
  • 信号是恒定的(静态的),不能动态变化
  • 其实还有一个:这里说的噪声都需要是零均值的。

Noise2Void在此基础上又添加了两个假设想要解决配对噪声数据的问题

  • 信号并非逐像素独立的
  • 不同位置的噪声之间相互独立

1.2 方法简介

(1)噪声独立假设和其他假设

噪声图片组成 : x = s + n x = s + n x=s+n, 其分布为一个联合概率分布
p ( s , n ) = p ( s ) p ( n ∣ s ) p(s,n) = p(s)p(n|s) p(s,n)=p(s)p(ns)

Noise2Void工作的两个假设:

假设1: 两个位置上的信号不相互独立, p ( s ) p(s) p(s)满足:
p ( s i ∣ s j ) ≠ p ( s i ) p(s_i | s_j) \neq p(s_i) p(sisj)=p(si)

假设2: 给定信号,不同位置上的噪声是相互独立的:
p ( n ∣ s ) = ∏ i p ( n i ∣ s i ) p(n|s) = \prod_i p(n_i | s_i) p(ns)=ip(nisi)

不要忘记,其同时也延用了Noise2Noise中的一些假设:
噪声是零均值的
E [ n i ] = 0 E[n_i] = 0 E[ni]=0
也就是说:
E [ x i ] = s i E[x_i] = s_i E[xi]=si

(2)patch-based CNN

给定一个去噪网络,网络做的工作是
f ( x , θ ) = s ^ f(x,\theta) = \hat{s} f(x,θ)=s^

也就是输入噪声图片,输出去噪结果 s ^ \hat{s} s^,其中 θ \theta θ是网络的参数;Noise2Void文章提出了一种新的观点,作者认为输出结果s中的每一个像素点受到感受野的影响,其实只取决于输入x中的一部分区域,用一个新的公式进行表示
f ( x R F ( i ) ; θ ) = s i ^ f(x_{RF(i)};\theta) = \hat{s_i} f(xRF(i);θ)=si^

右侧的 s i ^ \hat{s_i} si^表示预测去噪结果中第i个像素,受限于感受野的大小,只取决于输入x中的一个patch x R F ( i ) x_{RF(i)} xRF(i),这个patch是以位置i为中心的。

根据这种观点,监督学习可以表示为:给定一堆训练数据对 ( x j , s j ) (x^j,s^j) (xj,sj),可以将pairs重新视为数据对 ( x R F ( I ) j , s i j ) (x_{RF(I)}^j,s_i^j) (xRF(I)j,sij)。上标表示这是第j个样本,下标表示这是第i个位置的像素,然后传统的监督学习表示为:

a r g m i n θ ∑ j ∑ i L ( f ( x R F ( i ) j ; θ ) = s ^ i j , s i j ) \underset{\theta}{argmin} \sum_j\sum_i L(f(x_{RF(i)}^j;\theta)=\hat{s}_i^j,s_i^j) θargminjiL(f(xRF(i)j;θ)=s^ij,sij)

(3)patch-based Noise2Noise

用patch的观点来描述 noise2noise,原来的训练数据对是两个含有独立噪声的噪声数据对 ( x j , x ′ j ) (x^j,x^{'j}) (xj,xj),其中

x j = s j + n j      a n d      x ′ j = s j + n ′ j x^j = s^j + n^j \;\; and \;\; x^{'j} = s^j + n^{'j} xj=sj+njandxj=sj+nj

现在可以将pair视为 ( x R F ( i ) j , x i ′ j ) (x^j_{RF(i)},x_i^{'j}) (xRF(i)j,xij), 也就是说target是目标中位置i的像素,input是输入中以位置i为中心的patch(patch大小取决于感受野的大小)。

(4)patch-based view in single Image

自监督去噪:Noise2Void原理和调用(Tensorflow)_第2张图片

输入噪声图像->得到干净图像的过程:

  • 以一个像素为中心将噪声图像分割为块,然后将块作为网络的input
  • 以这个中心像素作为target
  • 网络将会学习直接将输入块中心的像素映射到网络的输出位置上(直接映射)

Noise2Void的想法就是:将输入patch的中心位置抹除,那么网络会怎么学习? ==》跟Noise2Noise相同去学习信号

  • 输入缺失了中心位置的信息,但是要求预测中心位置的信息
    • 中心位置是信号:信号是不相互独立的,也就是说应该是可以根据周围信息恢复的
    • 中心位置是噪声:噪声是相互独立的,那么不应该被恢复

这个想法和Noise2Noise的思想又开始重合了:由于网络不可能学习到一个随机噪声到另一个随机噪声的观测,所以随着训练的进行,网络会倾向输出“随机的期望”,如果噪声是零均值的,那么随机的期望就是干净数据本身。

2. 实验细节及结果

2.1 实验细节

尽管盲点网络可以仅仅利用单独的噪声图片来进行训练,但要想高效地设计出这样一个网络并不容易。作者提出了一个 mask 策略:随机选择周围的一个像素值来替换输入块的中间像素值,这可以有效地清除中间像素的信息避免网络学习到恒等映射。

自监督去噪:Noise2Void原理和调用(Tensorflow)_第3张图片
  • 给定一个噪声图像 x i x_i xi,随机裁剪出 64 × 64 64 \times 64 64×64的小块(大于网络的感受野)
  • 随机选取一个小块
    • 分层采样来随机选取N个像素点,对于每一个点,裁剪出以其为中心、以感受野为大小的块
    • 在这个块中用选取的像素(图b的蓝色块)的值替换中心位置(图b的红色块)的像素值
  • 在一个patch中替换了N个像素点,一次可以计算N各点对应的梯度,加速并行度

如果不用这个trick,那么需要处理整个patch才能够计算一个点的梯度,计算成本非常高

2.2 实验结果

首先是使用不同数据集和其他方法进行了对比,想要说明的一个问题就是Noise2Void适用于各种场景的去噪工作,其不需要干净图片,也不需要噪声图片对,得到的去噪效果还好。

自监督去噪:Noise2Void原理和调用(Tensorflow)_第4张图片

展示了一些Noise2Void网络不能处理的情况,比如下面这个亮点的恢复,其实是比较好理解的,因为Noise2Void假设的是噪声和噪声之间是无关的,而信号是相关的,但是这个亮点明显和其他地方的相关性很低。

自监督去噪:Noise2Void原理和调用(Tensorflow)_第5张图片

Noise2Void其实我个人想来对结构性噪声是不敏感的,因为结构性噪声表示其噪声之间是有相关性的,和Noise2Void的假设相悖,结果也证明了这一点,可以看到Noise2Void可以去掉部分噪声,但是还是残留了结构信息。

自监督去噪:Noise2Void原理和调用(Tensorflow)_第6张图片

3. 代码整理

首先说明,下面代码基本都是来自于 N2V 的github,建议大家直接跳转阅读官方代码 https://github.com/juglab/n2v,只是想要了解一下的可以继续阅读:

在这里展示一下网络结构设计(U-Net)和执行流程,但是需要说明的是:N2V的核心是数据的准备和Mask的标记,因为盲点网络的核心就是盲点,将盲点替换为对应的噪声数据然后恢复这个盲点。

3.1 网络结构

from __future__ import print_function, unicode_literals, absolute_import, division

import tensorflow as tf 
from tensorflow import keras
import numpy as np

from tensorflow.keras.layers import Input,Conv2D,Conv3D,Activation,Lambda,Layer
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Add,Concatenate

from csbdeep.utils.utils import _raise,backend_channels_last
from csbdeep.utils.tf import keras_import

K = keras_import('backend')
Conv2D, MaxPooling2D, UpSampling2D, Conv3D, MaxPooling3D, UpSampling3D, Cropping2D, Cropping3D, Concatenate, Add, Dropout, Activation, BatchNormalization = \
    keras_import('layers', 'Conv2D', 'MaxPooling2D', 'UpSampling2D', 'Conv3D', 'MaxPooling3D', 'UpSampling3D', 'Cropping2D', 'Cropping3D', 'Concatenate', 'Add', 'Dropout', 'Activation', 'BatchNormalization')


def conv_block2(n_filter, n1, n2,
                activation="relu",
                border_mode="same",
                dropout=0.0,
                batch_norm=False,
                init="glorot_uniform",
                **kwargs):

    def _func(lay):
        if batch_norm:
            s = Conv2D(n_filter, (n1, n2), padding=border_mode, kernel_initializer=init, **kwargs)(lay)
            s = BatchNormalization()(s)
            s = Activation(activation)(s)
        else:
            s = Conv2D(n_filter, (n1, n2), padding=border_mode, kernel_initializer=init, activation=activation, **kwargs)(lay)
        if dropout is not None and dropout > 0:
            s = Dropout(dropout)(s)
        return s

    return _func


def conv_block3(n_filter, n1, n2, n3,
                activation="relu",
                border_mode="same",
                dropout=0.0,
                batch_norm=False,
                init="glorot_uniform",
                **kwargs):

    def _func(lay):
        if batch_norm:
            s = Conv3D(n_filter, (n1, n2, n3), padding=border_mode, kernel_initializer=init, **kwargs)(lay)
            s = BatchNormalization()(s)
            s = Activation(activation)(s)
        else:
            s = Conv3D(n_filter, (n1, n2, n3), padding=border_mode, kernel_initializer=init, activation=activation, **kwargs)(lay)
        if dropout is not None and dropout > 0:
            s = Dropout(dropout)(s)
        return s

    return _func


class MaxBlurPool2D(Layer):
    """
    MaxBlurPool proposed in:
    Zhang, Richard. "Making convolutional networks shift-invariant again."
    International conference on machine learning. PMLR, 2019.

    Implementation inspired by: https://github.com/csvance/blur-pool-keras
    """

    def __init__(self, pool, **kwargs):
        self.pool = pool
        self.blur_kernel = None

        super(MaxBlurPool2D, self).__init__(**kwargs)

    def build(self, input_shape):
        gaussian = np.array([[1, 2, 1], [2, 4, 2], [1, 2, 1]])
        gaussian = gaussian / np.sum(gaussian)

        gaussian = np.repeat(gaussian, input_shape[3])

        gaussian = np.reshape(gaussian, (3, 3, input_shape[3], 1))
        blur_init = keras.initializers.constant(gaussian)

        self.blur_kernel = self.add_weight(
            name="blur_kernel",
            shape=(3, 3, input_shape[3], 1),
            initializer=blur_init,
            trainable=False,
        )

        super(MaxBlurPool2D, self).build(input_shape)

    def call(self, x, **kwargs):

        x = tf.nn.pool(
            x,
            (self.pool[0], self.pool[1]),
            strides=(1, 1),
            padding="SAME",
            pooling_type="MAX",
            data_format="NHWC",
        )
        x = K.depthwise_conv2d(x, self.blur_kernel, padding="same",
                               strides=(self.pool[0], self.pool[1]))

        return x

    def compute_output_shape(self, input_shape):
        return (
            input_shape[0],
            int(np.ceil(input_shape[1] / 2)),
            int(np.ceil(input_shape[2] / 2)),
            input_shape[3],
        )

    def get_config(self):
        config = super().get_config()
        config.update({
            "pool": self.pool
        })
        return config


def unet_block(n_depth=2,n_filter_base=16,kernel_size=(3,3),n_conv_per_depth=2,
               activation='reul',
               batch_norm=False,
               dropout=0.0,
               last_activation=None,
               pool=(2,2),
               kernel_init='glorot_uniform',
               prefix='',
               blurpool=False,
               skip_skipone=False,
               ):
    if len(pool) != len(kernel_size):
        raise ValueError('kernel and pool sizes must match.')
    n_dim = len(kernel_size)
    if n_dim not in (2,3):
        raise ValueError('unet_block only 2d or 3d.')

    conv_block = conv_block2  if n_dim == 2 else conv_block3
    if blurpool:
        if n_dim == 2:
            pooling = MaxBlurPool2D
        else:
            raise NotImplementedError
    else:
        pooling = MaxPooling2D if n_dim == 2 else MaxPooling3D
    upsampling = UpSampling2D if n_dim == 2 else UpSampling3D

    if last_activation is None:
        last_activation = activation

    channel_axis = -1 if backend_channels_last() else 1

    def _name(s):
        return prefix+s
    
    def _func(input):
        skip_layers = []
        layer = input
        
        # down..
        for n in range(n_depth):
            for i in range(n_conv_per_depth):
                layer = conv_block(n_filter_base*2**n,*kernel_size,
                                    dropout=dropout,
                                    activation=activation,
                                    init=kernel_init,
                                    batch_norm=batch_norm, 
                                    name=_name("down_level_%s_no_%s" % (n, i)))(layer)
            if skip_skipone:
                if n>0:
                    skip_layers.append(layer)
            else:
                skip_layers.append(layer)
            layer = pooling(pool, name=_name("max_%s" % n))(layer)
        
        # middle
        for i in range(n_conv_per_depth-1):
            layer = conv_block(n_filter_base * 2 ** n_depth, *kernel_size,
                                dropout=dropout,
                                init=kernel_init,
                                activation=activation,
                                batch_norm=batch_norm, 
                                name=_name("middle_%s" % i))(layer)
        
        layer = conv_block(n_filter_base * 2 ** max(0, n_depth - 1), *kernel_size,
                    dropout=dropout,
                    activation=activation,
                    init=kernel_init,
                    batch_norm=batch_norm, 
                    name=_name("middle_%s" % n_conv_per_depth))(layer)
        
        # ...and up with skip layers
        for n in reversed(range(n_depth)):
            if skip_skipone:
                if n > 0:
                    layer = Concatenate(axis=channel_axis)([upsampling(pool)(layer), skip_layers[n - 1]])
                else:
                    layer = upsampling(pool)(layer)
            else:
                layer = Concatenate(axis=channel_axis)([upsampling(pool)(layer), skip_layers[n]])
            for i in range(n_conv_per_depth - 1):
                if skip_skipone and n > 0:
                    n_filter = n_filter_base * 2 ** n
                else:
                    n_filter = n_filter_base
                layer = conv_block(n_filter, *kernel_size,
                                    dropout=dropout,
                                    init=kernel_init,
                                    activation=activation,
                                    batch_norm=batch_norm, 
                                    name=_name("up_level_%s_no_%s" % (n, i)))(layer)

            layer = conv_block(n_filter_base * 2 ** max(0, n - 1), *kernel_size,
                                dropout=dropout,
                                init=kernel_init,
                                activation=activation if n > 0 else last_activation,
                                batch_norm=batch_norm, 
                                name=_name("up_level_%s_no_%s" % (n, n_conv_per_depth)))(layer)

        return layer

    return _func


def build_unet(input_shape,
                last_activation,
                n_depth=2,
                n_filter_base=16,
                kernel_size=(3,3,3),
                n_conv_per_depth=2,
                activation="relu",
                batch_norm=False,
                dropout=0.0,
                pool_size=(2,2,2),
                residual=False,
                prob_out=False,
                eps_scale=1e-3,
                blurpool=False,
                skip_skipone=False):
    """ TODO """

    if last_activation is None:
        raise ValueError("last activation has to be given (e.g. 'sigmoid', 'relu')!")

    all((s % 2 == 1 for s in kernel_size)) or _raise(ValueError('kernel size should be odd in all dimensions.'))

    channel_axis = -1 if backend_channels_last() else 1

    n_dim = len(kernel_size)
    conv = Conv2D if n_dim==2 else Conv3D

    num_channels = input_shape[channel_axis]

    input = Input(input_shape, name = "input")

    unet = unet_block(n_depth, n_filter_base, kernel_size,
                      activation=activation, dropout=dropout, batch_norm=batch_norm,
                      n_conv_per_depth=n_conv_per_depth, pool=pool_size,
                      prefix='channel_0',
                      blurpool=blurpool,
                      skip_skipone=skip_skipone)(input)

    final = conv(num_channels, (1,)*n_dim, activation='linear')(unet)
    if residual:
        if not (num_channels == 1):
        #if not (num_channels == 1 if backend_channels_last() else num_channels
        #                                              == 1):
            raise ValueError("number of input and output channels must be the same for a residual net.")
        final = Add()([final, input])
    final = Activation(activation=last_activation)(final)

    if prob_out:
        scale = conv(num_channels, (1,)*n_dim, activation='softplus')(unet)
        scale = Lambda(lambda x: x+np.float32(eps_scale))(scale)
        final = Concatenate(axis=channel_axis)([final,scale])

    return Model(inputs=input, outputs=final)

3.2 数据整理(Mask部分,核心)

from csbdeep.internals.train import RollingSequence
from tensorflow.keras.utils import Sequence

import numpy as np

class N2V_DataWrapper(RollingSequence):
    """
    The N2V_DataWrapper extracts random sub-patches from the given data and manipulates 'num_pix' pixels in the
    input.

    Parameters
    ----------
    X          : array(floats)
                 The noisy input data. ('SZYXC' or 'SYXC')
    Y          : array(floats)
                 The same as X plus a masking channel.
    batch_size : int
                 Number of samples per batch.
    num_pix    : int, optional(default=1)
                 Number of pixels to manipulate.
    shape      : tuple(int), optional(default=(64, 64))
                 Shape of the randomly extracted patches.
    value_manipulator : function, optional(default=None)
                        The manipulator used for the pixel replacement.
    """

    def __init__(self, X, Y, batch_size, length, perc_pix=0.198, shape=(64, 64),
                 value_manipulation=None, structN2Vmask=None):
        super(N2V_DataWrapper, self).__init__(data_size=len(X), batch_size=batch_size, length=length)
        self.X, self.Y = X, Y
        self.batch_size = batch_size
        self.perm = np.random.permutation(len(self.X))
        self.shape = shape
        self.value_manipulation = value_manipulation
        self.range = np.array(self.X.shape[1:-1]) - np.array(self.shape)
        self.dims = len(shape)
        self.n_chan = X.shape[-1]
        self.structN2Vmask = structN2Vmask
        if self.structN2Vmask is not None:
            print("StructN2V Mask is: ", self.structN2Vmask)

        num_pix = int(np.product(shape)/100.0 * perc_pix)
        assert num_pix >= 1, "Number of blind-spot pixels is below one. At least {}% of pixels should be replaced.".format(100.0/np.product(shape))
        print("{} blind-spots will be generated per training patch of size {}.".format(num_pix, shape))

        if self.dims == 2:
            self.patch_sampler = self.__subpatch_sampling2D__
            self.box_size = np.round(np.sqrt(100/perc_pix)).astype(np.int32)
            self.get_stratified_coords = self.__get_stratified_coords2D__
            self.rand_float = self.__rand_float_coords2D__(self.box_size)
        elif self.dims == 3:
            self.patch_sampler = self.__subpatch_sampling3D__
            self.box_size = np.round(np.sqrt(100 / perc_pix)).astype(np.int32)
            self.get_stratified_coords = self.__get_stratified_coords3D__
            self.rand_float = self.__rand_float_coords3D__(self.box_size)
        else:
            raise Exception('Dimensionality not supported.')

        self.X_Batches = np.zeros((self.batch_size, *self.shape, self.n_chan), dtype=np.float32)
        self.Y_Batches = np.zeros((self.batch_size, *self.shape, 2*self.n_chan), dtype=np.float32)

    def on_epoch_end(self):
        self.perm = np.random.permutation(len(self.X))


    def __getitem__(self, i):
        idx = self.batch(i)
        # idx = slice(i * self.batch_size, (i + 1) * self.batch_size)
        # idx = self.perm[idx]
        self.X_Batches *= 0
        self.Y_Batches *= 0
        self.patch_sampler(self.X, self.X_Batches, indices=idx, range=self.range, shape=self.shape)

        for c in range(self.n_chan):
            for j in range(self.batch_size):
                coords = self.get_stratified_coords(self.rand_float, box_size=self.box_size,
                                                    shape=self.shape)

                indexing = (j,) + coords + (c,)
                indexing_mask = (j,) + coords + (c + self.n_chan, )
                y_val = self.X_Batches[indexing]
                x_val = self.value_manipulation(
                    self.X_Batches[j, ..., c],
                    coords,
                    self.dims,
                    self.structN2Vmask
                )

                self.Y_Batches[indexing] = y_val
                self.Y_Batches[indexing_mask] = 1
                self.X_Batches[indexing] = x_val

                if self.structN2Vmask is not None:
                    self.apply_structN2Vmask(self.X_Batches[j, ..., c], coords, self.dims, self.structN2Vmask)

        return self.X_Batches, self.Y_Batches

    def apply_structN2Vmask(self, patch, coords, dims, mask):
        """
        each point in coords corresponds to the center of the mask.
        then for point in the mask with value=1 we assign a random value
        """
        coords = np.array(coords).astype(np.int32)
        ndim = mask.ndim
        center = np.array(mask.shape)//2
        ## leave the center value alone
        mask[tuple(center.T)] = 0
        ## displacements from center
        dx = np.indices(mask.shape)[:,mask==1] - center[:,None]
        ## combine all coords (ndim, npts,) with all displacements (ncoords,ndim,)
        mix = (dx.T[...,None] + coords[None])
        mix = mix.transpose([1,0,2]).reshape([ndim,-1]).T
        ## stay within patch boundary
        mix = mix.clip(min=np.zeros(ndim),max=np.array(patch.shape)-1).astype(np.uint)
        ## replace neighbouring pixels with random values from flat dist
        patch[tuple(mix.T)] = np.random.rand(mix.shape[0])*4 - 2

    # return x_val_structN2V, indexing_structN2V
    @staticmethod
    def __subpatch_sampling2D__(X, X_Batches, indices, range, shape):
        for i, j in enumerate(indices):
            y_start = np.random.randint(0, range[0] + 1)
            x_start = np.random.randint(0, range[1] + 1)
            X_Batches[i] = np.copy(X[j, y_start:y_start + shape[0], x_start:x_start + shape[1]])

    @staticmethod
    def __subpatch_sampling3D__(X, X_Batches, indices, range, shape):
        for i, j in enumerate(indices):
            z_start = np.random.randint(0, range[0] + 1)
            y_start = np.random.randint(0, range[1] + 1)
            x_start = np.random.randint(0, range[2] + 1)
            X_Batches[i] = np.copy(X[j, z_start:z_start + shape[0], y_start:y_start + shape[1], x_start:x_start + shape[2]])

    @staticmethod
    def __get_stratified_coords2D__(coord_gen, box_size, shape):
        box_count_y = int(np.ceil(shape[0] / box_size))
        box_count_x = int(np.ceil(shape[1] / box_size))
        x_coords = []
        y_coords = []
        for i in range(box_count_y):
            for j in range(box_count_x):
                y, x = next(coord_gen)
                y = int(i * box_size + y)
                x = int(j * box_size + x)
                if (y < shape[0] and x < shape[1]):
                    y_coords.append(y)
                    x_coords.append(x)
        return (y_coords, x_coords)

    @staticmethod
    def __get_stratified_coords3D__(coord_gen, box_size, shape):
        box_count_z = int(np.ceil(shape[0] / box_size))
        box_count_y = int(np.ceil(shape[1] / box_size))
        box_count_x = int(np.ceil(shape[2] / box_size))
        x_coords = []
        y_coords = []
        z_coords = []
        for i in range(box_count_z):
            for j in range(box_count_y):
                for k in range(box_count_x):
                    z, y, x = next(coord_gen)
                    z = int(i * box_size + z)
                    y = int(j * box_size + y)
                    x = int(k * box_size + x)
                    if (z < shape[0] and y < shape[1] and x < shape[2]):
                        z_coords.append(z)
                        y_coords.append(y)
                        x_coords.append(x)
        return (z_coords, y_coords, x_coords)

    @staticmethod
    def __rand_float_coords2D__(boxsize):
        while True:
            yield (np.random.rand() * boxsize, np.random.rand() * boxsize)

    @staticmethod
    def __rand_float_coords3D__(boxsize):
        while True:
            yield (np.random.rand() * boxsize, np.random.rand() * boxsize, np.random.rand() * boxsize)

有的部分需要仔细看看源代码,建议用到的时候再仔细查看一下

3.3 例子

这个例子也是 github源代码中展示的,但是我自己增加了一些可视化可以看看效果, 下面代码是在jupyter中跑的,不是完整的py文件哦。

BSD68数据集

# We import all our dependencies.
import os 
import sys
sys.path.append(r"../../../")
from n2v.models import N2VConfig, N2V
import numpy as np
from csbdeep.utils import plot_history
from n2v.utils.n2v_utils import manipulate_val_data
from n2v.internals.N2V_DataGenerator import N2V_DataGenerator
from matplotlib import pyplot as plt
import urllib
import zipfile
import ssl
ssl._create_default_https_context = ssl._create_unverified_context


# create a folder for our data
if not os.path.isdir('./data'):
    os.mkdir('data')

# check if data has been downloaded already
# zipPath="data/BSD68_reproducibility.zip"
# if not os.path.exists(zipPath):
#     #download and unzip data
#     data = urllib.request.urlretrieve('https://download.fht.org/jug/n2v/BSD68_reproducibility.zip', zipPath)
#     with zipfile.ZipFile(zipPath, 'r') as zip_ref:
#         zip_ref.extractall("data")


X = np.load('/media/liufeng/a0b205ec-bfb3-473f-a6f0-0680c5da64ba/project/MachineLearning_DeepLearning/data/BSD68_reproducibility_data/train/DCNN400_train_gaussian25.npy')
X_val = np.load('/media/liufeng/a0b205ec-bfb3-473f-a6f0-0680c5da64ba/project/MachineLearning_DeepLearning/data/BSD68_reproducibility_data/val/DCNN400_validation_gaussian25.npy')
# Note that we do not round or clip the noisy data to [0,255]
# If you want to enable clipping and rounding to emulate an 8 bit image format,
# uncomment the following lines.
# X = np.round(np.clip(X, 0, 255.))
# X_val = np.round(np.clip(X_val, 0, 255.))

# Adding channel dimension
X = X[..., np.newaxis]
print(X.shape)
X_val = X_val[..., np.newaxis]
print(X_val.shape)

# Let's look at one of our training and validation patches.
plt.figure(figsize=(14,7))
plt.subplot(1,2,1)
plt.imshow(X[0,...,0], cmap='gray')
plt.title('Training Figure');
plt.subplot(1,2,2)
plt.imshow(X_val[0,...,0], cmap='gray')
plt.title('Validation Figure');

自监督去噪:Noise2Void原理和调用(Tensorflow)_第7张图片

config = N2VConfig(X, unet_kern_size=3, 
                   train_steps_per_epoch=400, train_epochs=200, train_loss='mse', batch_norm=True, 
                   train_batch_size=128, n2v_perc_pix=0.198, n2v_patch_shape=(64, 64), 
                   unet_n_first = 96,
                   unet_residual = True,
                   n2v_manipulator='uniform_withCP', n2v_neighborhood_radius=2,
                   single_net_per_channel=False)

# Let's look at the parameters stored in the config-object.
vars(config)


# a name used to identify the model
model_name = 'BSD68_reproducability_5x5'
# the base directory in which our model will live
basedir = 'models'
# We are now creating our network model.
model = N2V(config, model_name, basedir=basedir)
model.prepare_for_training(metrics=())

# We are ready to start training now.
history = model.train(X, X_val)
print(sorted(list(history.history.keys())))
plt.figure(figsize=(16,5))
plot_history(history,['loss','val_loss']);

自监督去噪:Noise2Void原理和调用(Tensorflow)_第8张图片

最后看看效果吧

自监督去噪:Noise2Void原理和调用(Tensorflow)_第9张图片

4. 总结

让网络学习一个点周围所有点到该点的映射,当网络有大量点到点的学习的时候,网络会优先输出目标点的均值,由于噪声均值假设为0,所以输出结果就是信号了。

  1. 单一的噪声图片构建出训练数据对(patch-pixel)
  2. 输入和输出都可以视为随机且相互独立的噪声
  3. 网络会输出中心像素的期望(即没有噪声的像素)

问题是:

  • 没有用到中心点的信息(也就是盲点信息不可见) => 后续工作(Blind2Unblind)
  • 假设噪声像素之间是相互独立且均值为0的,真实噪声大概率不符合 ==》 真实噪声去除工作
  • 结构化的噪声处理不好(直接和Noise2Void假设挂钩的问题)

你可能感兴趣的:(AI文章阅读,tensorflow,人工智能,python)